speccon example code: speccon1d_vr_vert_and_radial_equal_vs_free_strain_nogmaiandli2003.pyΒΆ

# speccon1d_vr example (if viewing this in docs, plots are at bottom of page)

# Vertical and radial consolidation of clay with thin sand layers.
# Compare free strain solution of Nogami and Li (2003) with the equal strain
# solutin of speccon1d_vr.  This is similar to Figure 10c) from the article.
# The orignal solution of Nogami and Li (2003)
# is implemented separately in geotecha.consolidation.nogamiandli2003

# Nogami, Toyoaki, and Maoxin Li. (2003) 'Consolidation of Clay with a
# System of Vertical and Horizontal Drains'. Journal of
# Geotechnical and Geoenvironmental Engineering 129, no. 9
# 838-48. doi:10.1061/(ASCE)1090-0241(2003)129:9(838).


# This file should be run with python.  It will not work if run with the
# speccon1d_vr.exe script program.

from __future__ import division, print_function
import numpy as np
from geotecha.speccon.speccon1d_vr import Speccon1dVR
import matplotlib.pyplot as plt

#Expected values
#t = time values
#avp = average excess pore pressure
#z = depth values
#por = excess pore pressure at time t and depth z.
#settle = settlement
t = np.array([ 0.01      ,  0.01603286,  0.02570525,  0.04121285,  0.06607597,
    0.1, 0.10593866,  0.16984993,  0.27231794,  0.4, 0.43660343,  0.7 ])

z = np.array(
  [ 0.    ,  0.0625,  0.125 ,  0.1875,  0.25  ,  0.3125,  0.375 ,
    0.4375,  0.5   ,  0.5625,  0.625 ,  0.6875,  0.75  ,  0.8125,
    0.875 ,  0.9375,  1.    ,  1.025 ,  1.05  ,  1.075 ,  1.1   ,
    1.1625,  1.225 ,  1.2875,  1.35  ,  1.4125,  1.475 ,  1.5375,
    1.6   ,  1.6625,  1.725 ,  1.7875,  1.85  ,  1.9125,  1.975 ,
    2.0375,  2.1   ,  2.125 ,  2.15  ,  2.175 ,  2.2   ,  2.2625,
    2.325 ,  2.3875,  2.45  ,  2.5125,  2.575 ,  2.6375,  2.6999   ])

por = np.array(
  [[  0.00000000e+00,   0.00000000e+00,   0.00000000e+00],
   [  3.30085802e+01,   8.39070407e+00,   3.58707855e-01],
   [  6.05040116e+01,   1.64657476e+01,   7.03954600e-01],
   [  7.93733840e+01,   2.39216010e+01,   1.02278441e+00],
   [  8.98276000e+01,   3.04784367e+01,   1.30323304e+00],
   [  9.44368466e+01,   3.58906380e+01,   1.53477694e+00],
   [  9.61739263e+01,   3.99558431e+01,   1.70872820e+00],
   [  9.69096134e+01,   4.25222425e+01,   1.81856068e+00],
   [  9.72060228e+01,   4.34939559e+01,   1.86015483e+00],
   [  9.70563632e+01,   4.28344044e+01,   1.83195234e+00],
   [  9.64675854e+01,   4.05676349e+01,   1.73501446e+00],
   [  9.51338553e+01,   3.67775792e+01,   1.57298210e+00],
   [  9.15678072e+01,   3.16052348e+01,   1.35193903e+00],
   [  8.28664682e+01,   2.52437753e+01,   1.08018340e+00],
   [  6.59357468e+01,   1.79316479e+01,   7.67916132e-01],
   [  3.96855349e+01,   9.94380297e+00,   4.26857907e-01],
   [  6.59655749e+00,   1.58132211e+00,   6.98091328e-02],
   [  6.59134099e+00,   1.58005846e+00,   6.97557684e-02],
   [  6.58961224e+00,   1.57964519e+00,   6.97399004e-02],
   [  6.59137041e+00,   1.58008208e+00,   6.97615203e-02],
   [  6.59661708e+00,   1.58136940e+00,   6.98206398e-02],
   [  3.98547617e+01,   1.00628681e+01,   4.55528866e-01],
   [  6.63377268e+01,   1.81728261e+01,   8.24478652e-01],
   [  8.35306351e+01,   2.56128437e+01,   1.16311926e+00],
   [  9.24242085e+01,   3.21098488e+01,   1.45901394e+00],
   [  9.60705684e+01,   3.74261238e+01,   1.70129661e+00],
   [  9.74392519e+01,   4.13677993e+01,   1.88107072e+00],
   [  9.81005003e+01,   4.37915763e+01,   1.99173594e+00],
   [  9.83479591e+01,   4.46095565e+01,   2.02923036e+00],
   [  9.81079539e+01,   4.37921401e+01,   1.99217957e+00],
   [  9.74436874e+01,   4.13689901e+01,   1.88194701e+00],
   [  9.60657415e+01,   3.74280676e+01,   1.70258384e+00],
   [  9.24170918e+01,   3.21127333e+01,   1.46068005e+00],
   [  8.35319659e+01,   2.56169153e+01,   1.16512240e+00],
   [  6.63469036e+01,   1.81783823e+01,   8.26768047e-01],
   [  3.98602199e+01,   1.00702443e+01,   4.58045763e-01],
   [  6.59182174e+00,   1.59091774e+00,   7.24995316e-02],
   [  6.58658179e+00,   1.58963382e+00,   7.24411588e-02],
   [  6.58484730e+00,   1.58920618e+00,   7.24217283e-02],
   [  6.58661723e+00,   1.58963460e+00,   7.24412296e-02],
   [  6.59189335e+00,   1.59091932e+00,   7.24996732e-02],
   [  4.00379871e+01,   1.00742370e+01,   4.58399695e-01],
   [  6.66669810e+01,   1.81862162e+01,   8.27472042e-01],
   [  8.39318565e+01,   2.56282977e+01,   1.16616892e+00],
   [  9.28276558e+01,   3.21272424e+01,   1.46205756e+00],
   [  9.64383871e+01,   3.74451724e+01,   1.70427658e+00],
   [  9.77664761e+01,   4.13880757e+01,   1.88393471e+00],
   [  9.83983815e+01,   4.38125372e+01,   1.99443713e+00],
   [  9.86319025e+01,   4.46305720e+01,   2.03172745e+00]])

avp = np.array(
  [[  7.25979052e+01,   6.65166314e+01,   5.89096834e+01,
      4.94554633e+01,   3.79564622e+01,   2.66323138e+01,
      2.50358034e+01,   1.28862133e+01,   4.44927613e+00,
      1.18311566e+00,   8.09339892e-01,   5.26895921e-02]])
settle = np.array(
  [[  73.98565603,   90.40509513,  110.94385476,  136.47024905,
     167.51755212,  198.09275262,  202.40333078,  235.20722417,
     257.98695445,  266.80558772,  267.81478229,  269.8577381 ]])

#################################################
##nogami and li parameters to generate expected values
#surcharge_vs_time = PolyLine([0,0,10], [0,100,100])
#hs=0.05
#h = np.array([1, hs, hs, 1, hs, hs, 0.5])
#lam = 100
#kv = np.array([1,lam/hs, lam/hs, 1, lam/hs, lam/hs, 1])
#mv = np.array([1.0, 1, 1, 1, 1, 1, 1])
#kh = kv
#
#r0 = 0.05
#r1 = 20 * r0
##z = layer_coords(h, 45,2)
#
#bctop = 0
#bcbot = 1
#nv = 15
#nh = 5
#
#tpor = np.array([0.01,0.1, 0.4])
#
#z = np.array(
#  [ 0.    ,  0.0625,  0.125 ,  0.1875,  0.25  ,  0.3125,  0.375 ,
#    0.4375,  0.5   ,  0.5625,  0.625 ,  0.6875,  0.75  ,  0.8125,
#    0.875 ,  0.9375,  1.    ,  1.025 ,  1.05  ,  1.075 ,  1.1   ,
#    1.1625,  1.225 ,  1.2875,  1.35  ,  1.4125,  1.475 ,  1.5375,
#    1.6   ,  1.6625,  1.725 ,  1.7875,  1.85  ,  1.9125,  1.975 ,
#    2.0375,  2.1   ,  2.125 ,  2.15  ,  2.175 ,  2.2   ,  2.2625,
#    2.325 ,  2.3875,  2.45  ,  2.5125,  2.575 ,  2.6375,  2.6999   ])
#
#
#t = np.array(
#   [ 0.01      ,  0.01603286,  0.02570525,  0.04121285,  0.06607597,
#    0.1, 0.10593866,  0.16984993,  0.27231794,  0.4, 0.43660343,  0.7 ])
#
#max_iter=20000
#vertical_roots_x0 = 2.2
#vertical_roots_dx = 1e-3
#vertical_roots_p = 1.01
#################################################

reader = ("""\
surcharge_vs_time = PolyLine([0,0,10], [0,100,100])
hs=0.05
h = np.array([1, hs, hs, 1, hs, hs, 0.5])
lam = 100
kv = np.array([1,lam/hs, lam/hs, 1, lam/hs, lam/hs, 1])
mv = np.array([1.0, 1, 1, 1, 1, 1, 1])
kh = kv

tpor = np.array([0.01,0.1, 0.4])

z = np.array(
  [ 0.    ,  0.0625,  0.125 ,  0.1875,  0.25  ,  0.3125,  0.375 ,
    0.4375,  0.5   ,  0.5625,  0.625 ,  0.6875,  0.75  ,  0.8125,
    0.875 ,  0.9375,  1.    ,  1.025 ,  1.05  ,  1.075 ,  1.1   ,
    1.1625,  1.225 ,  1.2875,  1.35  ,  1.4125,  1.475 ,  1.5375,
    1.6   ,  1.6625,  1.725 ,  1.7875,  1.85  ,  1.9125,  1.975 ,
    2.0375,  2.1   ,  2.125 ,  2.15  ,  2.175 ,  2.2   ,  2.2625,
    2.325 ,  2.3875,  2.45  ,  2.5125,  2.575 ,  2.6375,  2.6999   ])

t = np.array(
   [ 0.01      ,  0.01603286,  0.02570525,  0.04121285,  0.06607597,
    0.1, 0.10593866,  0.16984993,  0.27231794,  0.4, 0.43660343,  0.7 ])


z2 = np.cumsum(h)
z1 = z2-h
H = np.sum(h)

z1/=H
z2/=H

kv = PolyLine(z1, z2, kv, kv)
mv = PolyLine(z1, z2, mv, mv)
kh = kv


drn = 1
neig=80

mvref=1.0

surcharge_vs_depth = mv

#rw=0.05, re = 20*rw = 1.0, n=20, no smear zone
#Therfore muI=2.253865374, eta = 2/mu/re**2 = 0.887364446
etref = 0.887364446
et = PolyLine(z1, z2, np.ones_like(z1), np.ones_like(z1))

dTv = 1/H**2
dTh = etref

ppress_z = np.array(
   [ 0.    ,  0.0625,  0.125 ,  0.1875,  0.25  ,  0.3125,  0.375 ,
    0.4375,  0.5   ,  0.5625,  0.625 ,  0.6875,  0.75  ,  0.8125,
    0.875 ,  0.9375,  1.    ,  1.025 ,  1.05  ,  1.075 ,  1.1   ,
    1.1625,  1.225 ,  1.2875,  1.35  ,  1.4125,  1.475 ,  1.5375,
    1.6   ,  1.6625,  1.725 ,  1.7875,  1.85  ,  1.9125,  1.975 ,
    2.0375,  2.1   ,  2.125 ,  2.15  ,  2.175 ,  2.2   ,  2.2625,
    2.325 ,  2.3875,  2.45  ,  2.5125,  2.575 ,  2.6375,  2.6999   ])

ppress_z/=H

avg_ppress_z_pairs = [[0,1]]
settlement_z_pairs = [[0,1]]

tvals = np.array(
  [ 0.01      ,  0.01603286,  0.02570525,  0.04121285,  0.06607597,
    0.1, 0.10593866,  0.16984993,  0.27231794,  0.4, 0.43660343,  0.7 ])

ppress_z_tval_indexes = [0, 5, 9] #0.01, 0.1, 0.4
""")




a = Speccon1dVR(reader)
a.make_all()

# custom plots
title = ("Nogami and li (2003) vertical and radial drainage"
         " free strain vs equal strain. Lambda=100")
fig = plt.figure(figsize=(12,5))
fig.suptitle(title)
#z vs u
ax1 = fig.add_subplot("131")
ax1.set_xlabel('Excess pore pressure, kPa')
ax1.set_ylabel('Depth')
ax1.invert_yaxis()
ax1.plot(por, z,
         ls="None", color='Blue', marker="+", ms=5,
         label='expected')
ax1.plot(a.por, z,
         ls='-', color='red', marker='o', ms=5, markerfacecolor='None',
         markeredgecolor='red',
         label='calculated')

# avp vs t
ax2 = fig.add_subplot("132")
ax2.set_xlabel('Time')
ax2.set_ylabel('Average excess pore pressure, kPa')
ax2.set_xscale('log')
ax2.set_xlim((0.01, 1))
ax2.plot(t, avp[0],
         ls="None", color='Blue', marker="+", ms=5,
         label='expected')
ax2.plot(t, a.avp[0],
         ls='-', color='red', marker='o', ms=5, markerfacecolor='None',
         markeredgecolor='red',
         label='calculated')


# settlement vs t
ax3 = fig.add_subplot("133")
ax3.set_xlabel('Time')
ax3.set_ylabel('Settlement')
ax3.invert_yaxis()
ax3.set_xscale('log')
ax3.set_xlim((0.01, 1))
ax3.plot(t, settle[0],
         ls="None", color='Blue', marker="+", ms=5,
         label='expected')
ax3.plot(t, a.set[0],
         ls='-', color='red', marker='o', ms=5, markerfacecolor='None',
         markeredgecolor='red',
         label='calculated')
leg = ax3.legend()
leg.draggable()

fig.subplots_adjust(top=0.90, bottom=0.15, left=0.1, right=0.94, wspace=0.4)
#fig.tight_layout()
plt.show()

(Source code, png, hires.png, pdf)

../../_images/speccon1d_vr_vert_and_radial_equal_vs_free_strain_nogmaiandli2003.png