speccon example code: speccon1d_vrc_stone_column_luetal2010.pyΒΆ

# speccon1d_vrc example (if viewing this in docs, plots are at bottom of page)

# Stone column with vertical and radial drainage in both the column and soil
# Comapre with Lu et al. (2010)
# The orignal solution of Lu et al. (2010)
# is implemented separately in
# geotecha.consolidation.luetal2010.

# Lu, Meng-Meng, Kang-He Xie, and Biao Guo. 2010. 'Consolidation
# Theory for a Composite Foundation Considering Radial and Vertical
# Flows within the Column and the Variation of Soil Permeability
# within the Disturbed Soil Zone'. Canadian Geotechnical
# Journal 47 (2): 207-17. doi:10.1139/T09-086.

# This file should be run with python.  It will not work if run with the
# speccon1d_vr.exe script program.

from __future__ import division, print_function
import numpy as np
from geotecha.speccon.speccon1d_vrc import Speccon1dVRC
import matplotlib.pyplot as plt

#Expected values
#t = time values
#avp = average excess pore pressure
#z = depth values
#por = excess pore pressure at time t and depth z.
#settle = settlement
z = np.array(
      [  0.        ,   0.52631579,   1.05263158,   1.57894737,
         2.10526316,   2.63157895,   3.15789474,   3.68421053,
         4.21052632,   4.73684211,   5.26315789,   5.78947368,
         6.31578947,   6.84210526,   7.36842105,   7.89473684,
         8.42105263,   8.94736842,   9.47368421,  10.        ])

t = np.array(
      [  0.01      ,   0.02682696,   0.07196857,   0.19306977,
         0.51794747,   1.38949549,   3.72759372,  10.        ])

por = np.array(
      [[  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
          0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
          0.00000000e+00,   0.00000000e+00],
       [  9.17485805e-01,   7.01719236e-01,   4.21755393e-01,
          1.94786515e-01,   6.54056592e-02,   1.33355230e-02,
          3.89712328e-04,   3.16237477e-08],
       [  9.66168183e-01,   8.98486152e-01,   6.80015128e-01,
          3.60540868e-01,   1.28467752e-01,   2.65620291e-02,
          7.76761900e-04,   6.30314731e-08],
       [  9.69825825e-01,   9.20901559e-01,   7.83513686e-01,
          4.82747535e-01,   1.87257571e-01,   3.95727628e-02,
          1.15850419e-03,   9.40086297e-08],
       [  9.73001762e-01,   9.29271016e-01,   8.19657575e-01,
          5.64302374e-01,   2.40538758e-01,   5.22652992e-02,
          1.53233099e-03,   1.24343612e-07],
       [  9.75806088e-01,   9.36464754e-01,   8.38815166e-01,
          6.17506711e-01,   2.87833953e-01,   6.45432601e-02,
          1.89568828e-03,   1.53829201e-07],
       [  9.78277402e-01,   9.42814343e-01,   8.54129319e-01,
          6.54605021e-01,   3.29297198e-01,   7.63175703e-02,
          2.24609368e-03,   1.82263981e-07],
       [  9.80449715e-01,   9.48405034e-01,   8.67548553e-01,
          6.83416142e-01,   3.65476307e-01,   8.75072151e-02,
          2.58115346e-03,   2.09453713e-07],
       [  9.82352927e-01,   9.53310968e-01,   8.79367998e-01,
          7.07654855e-01,   3.97066262e-01,   9.80395238e-02,
          2.89857882e-03,   2.35212664e-07],
       [  9.84013230e-01,   9.57597206e-01,   8.89734934e-01,
          7.28756552e-01,   4.24725876e-01,   1.07850060e-01,
          3.19620163e-03,   2.59364874e-07],
       [  9.85453477e-01,   9.61320595e-01,   8.98773593e-01,
          7.47245201e-01,   4.48982558e-01,   1.16882229e-01,
          3.47198913e-03,   2.81745359e-07],
       [  9.86693490e-01,   9.64530519e-01,   9.06592203e-01,
          7.63358521e-01,   4.70211358e-01,   1.25086718e-01,
          3.72405786e-03,   3.02201237e-07],
       [  9.87750336e-01,   9.67269553e-01,   9.13284407e-01,
          7.77252517e-01,   4.88657500e-01,   1.32420888e-01,
          3.95068649e-03,   3.20592775e-07],
       [  9.88638561e-01,   9.69574028e-01,   9.18930380e-01,
          7.89052617e-01,   5.04473596e-01,   1.38848192e-01,
          4.15032750e-03,   3.36794338e-07],
       [  9.89370390e-01,   9.71474512e-01,   9.23597781e-01,
          7.98864200e-01,   5.17753731e-01,   1.44337675e-01,
          4.32161779e-03,   3.50695255e-07],
       [  9.89955896e-01,   9.72996216e-01,   9.27342552e-01,
          8.06774875e-01,   5.28557651e-01,   1.48863591e-01,
          4.46338787e-03,   3.62200568e-07],
       [  9.90403137e-01,   9.74159324e-01,   9.30209586e-01,
          8.12855360e-01,   5.36925201e-01,   1.52405122e-01,
          4.57466988e-03,   3.71231683e-07],
       [  9.90718270e-01,   9.74979268e-01,   9.32233259e-01,
          8.17160070e-01,   5.42883792e-01,   1.54946203e-01,
          4.65470412e-03,   3.77726910e-07],
       [  9.90905631e-01,   9.75466923e-01,   9.33437836e-01,
          8.19727561e-01,   5.46451805e-01,   1.56475410e-01,
          4.70294426e-03,   3.81641879e-07],
       [  9.90967799e-01,   9.75628759e-01,   9.33837762e-01,
          8.20580842e-01,   5.47639964e-01,   1.56985904e-01,
          4.71906097e-03,   3.82949847e-07]])

pors = np.array(
      [[  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
          0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
          0.00000000e+00,   0.00000000e+00],
       [  9.27633737e-01,   7.09244763e-01,   4.25937878e-01,
          1.96408780e-01,   6.57859407e-02,   1.33918199e-02,
          3.91305874e-04,   3.17530525e-08],
       [  9.75739340e-01,   9.07326067e-01,   6.86393712e-01,
          3.63445060e-01,   1.29204350e-01,   2.66740512e-02,
          7.79938099e-04,   6.32891995e-08],
       [  9.78392063e-01,   9.28999691e-01,   7.90242233e-01,
          4.86429783e-01,   1.88307407e-01,   3.97393868e-02,
          1.16324133e-03,   9.43930170e-08],
       [  9.80677548e-01,   9.36565657e-01,   8.25988279e-01,
          5.68305980e-01,   2.41847694e-01,   5.24848888e-02,
          1.53859670e-03,   1.24852035e-07],
       [  9.82694742e-01,   9.43043805e-01,   8.44624631e-01,
          6.21533374e-01,   2.89345525e-01,   6.48137183e-02,
          1.90343973e-03,   1.54458186e-07],
       [  9.84471652e-01,   9.48759787e-01,   8.59451193e-01,
          6.58509924e-01,   3.30959720e-01,   7.66364016e-02,
          2.25527791e-03,   1.83009232e-07],
       [  9.86032950e-01,   9.53791006e-01,   8.72433990e-01,
          6.87150555e-01,   3.67247069e-01,   8.78715909e-02,
          2.59170769e-03,   2.10310138e-07],
       [  9.87400313e-01,   9.58204661e-01,   8.83865707e-01,
          7.11214114e-01,   3.98912768e-01,   9.84463472e-02,
          2.91043094e-03,   2.36174414e-07],
       [  9.88592726e-01,   9.62059704e-01,   8.93890009e-01,
          7.32151484e-01,   4.26624937e-01,   1.08296025e-01,
          3.20927064e-03,   2.60425378e-07],
       [  9.89626745e-01,   9.65407626e-01,   9.02627867e-01,
          7.50490874e-01,   4.50918321e-01,   1.17363873e-01,
          3.48618575e-03,   2.82897374e-07],
       [  9.90516726e-01,   9.68293148e-01,   9.10184627e-01,
          7.66470876e-01,   4.72173178e-01,   1.25600462e-01,
          3.73928509e-03,   3.03436893e-07],
       [  9.91275027e-01,   9.70754815e-01,   9.16651423e-01,
          7.80247573e-01,   4.90638166e-01,   1.32963073e-01,
          3.96684030e-03,   3.21903631e-07],
       [  9.91912175e-01,   9.72825511e-01,   9.22106262e-01,
          7.91946311e-01,   5.06468070e-01,   1.39415101e-01,
          4.16729755e-03,   3.38171440e-07],
       [  9.92437017e-01,   9.74532898e-01,   9.26614960e-01,
          8.01672362e-01,   5.19758346e-01,   1.44925551e-01,
          4.33928815e-03,   3.52129196e-07],
       [  9.92856841e-01,   9.75899786e-01,   9.30231927e-01,
          8.09513227e-01,   5.30569632e-01,   1.49468650e-01,
          4.48163784e-03,   3.63681552e-07],
       [  9.93177475e-01,   9.76944435e-01,   9.33000820e-01,
          8.15539526e-01,   5.38942373e-01,   1.53023563e-01,
          4.59337481e-03,   3.72749594e-07],
       [  9.93403372e-01,   9.77680801e-01,   9.34955063e-01,
          8.19805595e-01,   5.44904396e-01,   1.55574210e-01,
          4.67373627e-03,   3.79271379e-07],
       [  9.93537667e-01,   9.78118721e-01,   9.36118251e-01,
          8.22349926e-01,   5.48474361e-01,   1.57109160e-01,
          4.72217362e-03,   3.83202356e-07],
       [  9.93582226e-01,   9.78264048e-01,   9.36504425e-01,
          8.23195491e-01,   5.49663152e-01,   1.57621569e-01,
          4.73835623e-03,   3.84515672e-07]])

porc = np.array(
      [[  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
          0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
          0.00000000e+00,   0.00000000e+00],
       [  1.05651237e-01,   9.96770796e-02,   8.71566174e-02,
          6.50053734e-02,   3.49831418e-02,   8.83176806e-03,
          2.62228672e-04,   2.12793636e-08],
       [  2.00475571e-01,   1.91293001e-01,   1.69728466e-01,
          1.28205500e-01,   6.95399456e-02,   1.76002592e-02,
          5.22665940e-04,   4.24133677e-08],
       [  2.84526766e-01,   2.73050992e-01,   2.45229852e-01,
          1.88167662e-01,   1.03270757e-01,   2.62428385e-02,
          7.79532644e-04,   6.32576454e-08],
       [  3.58938854e-01,   3.45699726e-01,   3.13201228e-01,
          2.44013857e-01,   1.35823923e-01,   3.46981320e-02,
          1.03107403e-03,   8.36698092e-08],
       [  4.24713829e-01,   4.10140609e-01,   3.74057906e-01,
          2.95373688e-01,   1.66908194e-01,   4.29066031e-02,
          1.27557173e-03,   1.03510423e-07],
       [  4.82737407e-01,   4.67178819e-01,   4.28379409e-01,
          3.42212830e-01,   1.96295431e-01,   5.08110698e-02,
          1.51135554e-03,   1.22643956e-07],
       [  5.33790958e-01,   5.17527283e-01,   4.76713556e-01,
          3.84663146e-01,   2.23815396e-01,   5.83571532e-02,
          1.73681479e-03,   1.40939707e-07],
       [  5.78562021e-01,   5.61815510e-01,   5.19551308e-01,
          4.22914138e-01,   2.49345817e-01,   6.54936514e-02,
          1.95040936e-03,   1.58272696e-07],
       [  6.17653556e-01,   6.00597404e-01,   5.57328872e-01,
          4.57162026e-01,   2.72801017e-01,   7.21728422e-02,
          2.15068022e-03,   1.74524523e-07],
       [  6.51592052e-01,   6.34358143e-01,   5.90431721e-01,
          4.87591411e-01,   2.94121507e-01,   7.83507177e-02,
          2.33625938e-03,   1.89584170e-07],
       [  6.80834613e-01,   6.63520194e-01,   6.19198268e-01,
          5.14370101e-01,   3.13265738e-01,   8.39871626e-02,
          2.50587924e-03,   2.03348764e-07],
       [  7.05775110e-01,   6.88448572e-01,   6.43923104e-01,
          5.37648014e-01,   3.30204229e-01,   8.90460831e-02,
          2.65838120e-03,   2.15724281e-07],
       [  7.26749478e-01,   7.09455365e-01,   6.64859820e-01,
          5.57557059e-01,   3.44915673e-01,   9.34955001e-02,
          2.79272365e-03,   2.26626182e-07],
       [  7.44040239e-01,   7.26803618e-01,   6.82223449e-01,
          5.74211227e-01,   3.57384471e-01,   9.73076133e-02,
          2.90798900e-03,   2.35979996e-07],
       [  7.57880303e-01,   7.40710602e-01,   6.96192539e-01,
          5.87706707e-01,   3.67599173e-01,   1.00458846e-01,
          3.00339000e-03,   2.43721828e-07],
       [  7.68456103e-01,   7.51350513e-01,   7.06910875e-01,
          5.98122006e-01,   3.75551464e-01,   1.02929876e-01,
          3.07827505e-03,   2.49798792e-07],
       [  7.75910102e-01,   7.58856641e-01,   7.14488869e-01,
          6.05518064e-01,   3.81235486e-01,   1.04705656e-01,
          3.13213271e-03,   2.54169378e-07],
       [  7.80342711e-01,   7.63323027e-01,   7.19004632e-01,
          6.09938335e-01,   3.84647364e-01,   1.05775430e-01,
          3.16459515e-03,   2.56803729e-07],
       [  7.81813642e-01,   7.64805630e-01,   7.20504729e-01,
          6.11408866e-01,   3.85784895e-01,   1.06132739e-01,
          3.17544065e-03,   2.57683850e-07]])

avp = np.array(
      [[  9.61190784e-01,   9.20180000e-01,   8.32864585e-01,
         6.60717386e-01,   3.83698642e-01,   1.00835010e-01,
         3.00428723e-03,   2.43793444e-07]])

settle = np.array(
      [[ 0.01122695,  0.02309079,  0.04834989,  0.09814961,  0.17828718,
        0.26011559,  0.28841662,  0.28928564]])




########################################################
##luetal2010 input to generate expected data
#    import numpy as np
#    from geotecha.consolidation.luetal2010 import luetal2010
#    rc=0.1
#    re=0.9
#    H=10
#    rs=0.15
#    ks=0.5
#    kv=1.0
#    kvc=2000
#    kh=1.0
#    khc=2
#    mvs=0.1
#    mvc=0.0005
#    gamw=10
#    utop=1
#    ubot=1
#    nterms=100
#    z = np.linspace(0,10,20)# np.array([0, 3.0, 6.0, 9.0, 10.0])
#    t = np.logspace(np.log10(0.01), np.log10(10), 8)#np.array([0.1, 0.8, 2.0])
#
#    por, pors, porc, avp, settle = luetal2010(
#                z,t, rc, re, H, rs, ks,
#                 kv, kvc, kh, khc,
#                 mvs, mvc, gamw, utop, ubot, nterms)
#    #Note for avp and settle you'll need to add an extra [] around the existing [].
#    for v in ['z', 't', 'por', 'pors', 'porc', 'avp', 'settle']:
#        print('{} = np.{}\n'.format(v, repr(eval(v))).replace("array([","array(\n      ["))
#########################################################

reader = ("""\
H = 10
drn = 1
#re=0.9, rc=0.1, rs=0.15, kh/ks=2, n=9, s=1.5, kap=2.0
#mu=1.87284145852, eta = 2/re**2/mu=1.3183901879341955

mvs = 0.1
mvc = 0.0005
mvref = mvs*9**2/(9**2 - 1 + mvs/mvc)
mv = PolyLine([0,1], [1,1])


khref = 1.0
etref = 1.3183901879341955
n=9
dTh = khref * etref/mvref/10 #khref/mvref/gamw * etref
kh = khc=PolyLine([0,1], [1,1])
et = PolyLine([0,1], [1,1])

khcref = 2.0
dThc = 8*khcref / (mvref * 10) /0.1**2
khc = PolyLine([0,1], [1,1])

kvref = 1.0
dTv = kvref/mvref/10/ H**2
kv = PolyLine([0,1], [1,1])

kvcref = 2000
kvc = PolyLine([0, 1], [1, 1])
dTvc=kvcref/H**2/mvref/10

neig = 40

surcharge_vs_depth = [PolyLine([0,1], [1,1])]
surcharge_vs_time = [PolyLine([0,0,10], [0,1,1])]

ppress_z = np.%s
tvals = np.%s
avg_ppress_z_pairs = [[0,1]]
settlement_z_pairs = [[0,1]]

    """ % (repr(z/10), repr(t)))


a = Speccon1dVRC(reader)
a.make_all()


# custom plots
title = ("Lu et al (2010) Stone column, load is uniform with depth")
fig = plt.figure(figsize=(13,6))
fig.suptitle(title)
#z vs u
ax1 = fig.add_subplot("141")
ax1.set_xlabel('Excess pore pressure \nin soil, kPa')
ax1.set_ylabel('Depth')
ax1.invert_yaxis()
ax1.plot(pors, z,
         ls="None", color='Blue', marker="+", ms=5,
         label='expected')
ax1.plot(a.pors, z,
         ls='-', color='red', marker='o', ms=5, markerfacecolor='None',
         markeredgecolor='red',
         label='calculated')


# avp vs t
ax2 = fig.add_subplot("143")
ax2.set_xlabel('Time')
ax2.set_ylabel('Average excess pore press \n(soil and column), kPa')
ax2.set_xscale('log')
ax2.set_xlim((0.01, 10))
ax2.plot(t, avp[0],
         ls="None", color='Blue', marker="+", ms=5,
         label='expected')
ax2.plot(t, a.avp[0],
         ls='-', color='red', marker='o', ms=5, markerfacecolor='None',
         markeredgecolor='red',
         label='calculated')


# settlement vs t
ax3 = fig.add_subplot("144")
ax3.set_xlabel('Time')
ax3.set_ylabel('Settlement')
ax3.invert_yaxis()
ax3.set_xscale('log')
ax3.set_xlim((0.01, 10))
ax3.plot(t, settle[0],
         ls="None", color='Blue', marker="+", ms=5,
         label='expected')
ax3.plot(t, a.set[0],
         ls='-', color='red', marker='o', ms=5, markerfacecolor='None',
         markeredgecolor='red',
         label='calculated')

leg = ax3.legend()
leg.draggable()


ax4 = fig.add_subplot("142")
ax4.set_xlabel('Excess pore pressure \nin column, kPa')
ax4.set_ylabel('Depth')
ax4.invert_yaxis()
ax4.plot(porc, z,
         ls="None", color='Blue', marker="+", ms=5,
         label='expected')
ax4.plot(a.porc, z,
         ls='-', color='red', marker='o', ms=5, markerfacecolor='None',
         markeredgecolor='red',
         label='calculated')

fig.subplots_adjust(top=0.90, bottom=0.15, left=0.1, right=0.94, wspace=0.4)
#fig.tight_layout()
plt.show()

(Source code, png, hires.png, pdf)

../../_images/speccon1d_vrc_stone_column_luetal2010.png