dengetal2013and2014¶
Function summary¶
dengetal2013 (z, t, rw, re[, A1, A2, A3, H, …]) |
Radial consolidation with depth and time dependent well resistance |
dengetal2014 (z, t, rw, re[, A3, H, rs, ks, …]) |
Radial consolidation with time dependent well resistance |
Module listing¶
Deng et al (2013) and (2014), “Consolidation by vertical drains when the discharge capacity varies with depth and time”.
-
geotecha.consolidation.dengetal2013and2014.
dengetal2013
(z, t, rw, re, A1=1, A2=0, A3=0, H=1, rs=None, ks=None, kw0=10000000000.0, kh=1, mv=0.1, gamw=10, ui=1)[source]¶ Radial consolidation with depth and time dependent well resistance
Implementation of [1].
Features:
- Radial flow to drain (no vertical flow in soil)
- Vertical flow in drain.
- Linear depth variation of drain permeability in time.
- Exponential decrease in drain peremability with time.
- Uses approximate (like Hansbo) method to solve pore pressure in drain.
- Radially averaged pore pressure at depth and time in soil.
Drain pereability is kw = kw0 * (A1 - A2 * z / H) * exp(-A3 * t)
Parameters: - z : float or 1d array/list of float
Depth.
- t : float or 1d array/list of float
Time.
- rw : float
Drain radius.
- re : float
Drain influence radius.
- A1 : float, optional
Parameter controlling depth dependance of well resistance. Default A1=1.
- A2 : float, optional
Parameter controlling depth dependance of well resistance. Default A2=0.
- A3 : float, optional
Parameter controlling time dependance of well resistance. Default A3=0.
- H : float, optional
Drainage path length. Default H=1.
- rs : float, optional
Drain influence radius. Default rs=None i.e. no smear zone.
- ks : float, optional
Smear zone permeability. Default ks=None, i.e. no smear zone.
- kw0 : float, optional
Initial well permeability. Default kw0=1e10 i.e. ideal drain.
- kh : float, optional
Horizontal coefficient of permeability. Default kh=1.
- mv : float, optional
Volume compressibility. Default mv=0.1.
- gamw : float, optional
Unit weight of water. Default gamw=10.
- ui : float, optional
Initial uniform pore water pressure. Default ui=1.
Returns: - por : 2d array of float
Pore pressure at depth and time. por is an array of size (len(z), len(t)).
References
[1] (1, 2) Deng, Yue-Bao, Kang-He Xie, and Meng-Meng Lu. 2013. ‘Consolidation by Vertical Drains When the Discharge Capacity Varies with Depth and Time’. Computers and Geotechnics 48 (March): 1-8. doi:10.1016/j.compgeo.2012.09.012.
-
geotecha.consolidation.dengetal2013and2014.
dengetal2014
(z, t, rw, re, A3=0, H=1, rs=None, ks=None, kw0=10000000000.0, kh=1, mv=0.1, gamw=10, ui=1, nterms=100)[source]¶ Radial consolidation with time dependent well resistance
An implementation of [1]
Features:
- Single layer, soil properties constant over time.
- Instant load uniform with depth.
- Radial flow to drain (no vertical flow in soil)
- Vertical flow in drain.
- Exponential decrease in drain peremability with time.
- Uses rigorous (infintite sum ) method to solve pore pressure in drain.
- Radially averaged pore pressure at depth and time in soil.
Drain permeability is kw = kw0 * exp(-A3 * t)
Parameters: - z : float or 1d array/list of float
Depth.
- t : float or 1d array/list of float
Time.
- rw : float
Drain radius.
- re : float
Drain influence radius.
- A3 : float, optional
Parameter controlling time dependance of well resistance. Default A3=0.
- H : float, optional
Drainage path length. Default H=1.
- rs : float, optional
Drain influence radius. Default rs=None i.e. no smear zone.
- ks : float, optional
Smear zone permeability. Default ks=None, i.e. no smear zone.
- kw0 : float, optional
Initial well permeability. Default kw0=1e10 i.e. ideal drain.
- kh : float, optional
Horizontal coefficient of permeability. Default kh=1.
- mv : float, optional
Volume compressibility. Default mv=0.1.
- gamw : float, optional
Unit weight of water. Default gamw=10.
- ui : float, optional
Initial uniform pore water pressure. Default ui=1.
- nterms : int, optional
number of summation terms, default = 100.
Returns: - por : 2d array of float
Pore pressure at depth and time. por is an array of size (len(z), len(t)).
References
[1] (1, 2) Deng, Yue-Bao, Gan-Bin Liu, Meng-Meng Lu, and Kang-he Xie. ‘Consolidation Behavior of Soft Deposits Considering the Variation of Prefabricated Vertical Drain Discharge Capacity’. Computers and Geotechnics 62 (October 2014): 310-16. doi:10.1016/j.compgeo.2014.08.006.