void_ratio_permeability¶
Class summary¶
CkPermeabilityModel (Ck, ka, ea) |
Semi-log void ratio permeability relationship |
ConstantPermeabilityModel (ka) |
Permeability constant with void ratio |
FunctionPermeabilityModel (fn_e_from_k, …) |
Functional definition of permeability void-ratio realationship |
PermeabilityVoidRatioRelationship |
Base class for defining permeability void ratio relationships |
PwiseLinearPermeabilityModel (ka, ea[, xlog, …]) |
Piecewise linear ratio permeability relationship |
Module listing¶
Relationships between permeability and void-ratio
-
class
geotecha.constitutive_models.void_ratio_permeability.
CkPermeabilityModel
(Ck, ka, ea)[source]¶ Bases:
geotecha.constitutive_models.void_ratio_permeability.PermeabilityVoidRatioRelationship
Semi-log void ratio permeability relationship
Parameters: - Ck : float
Slope of void-ratio vs permeability.
- ka, ea : float
Permeability and void ratio specifying a point on e-k line.
Methods
e_and_k_for_plotting
(**kwargs)Void ratio and permeability that plot the model e_from_k
(k, **kwargs)Void ratio from permeability k_from_e
(e, **kwargs)Permeability from void ratio plot_model
(**kwargs)Plot the void ratio-permeability -
e_and_k_for_plotting
(**kwargs)[source]¶ Void ratio and permeability that plot the model
Parameters: - npts : int, optional
Number of points to return. Default npts=100.
- xmin, xmax : float, optional
Range of x (i.e. effective stress) values from which to return points. Default xmin=1, xmax=100.
Returns: - x, y : 1d ndarray
npts permeability, and void ratio values between xmin and xmax.
-
e_from_k
(k, **kwargs)[source]¶ Void ratio from permeability
Parameters: - k : float
Current permeability.
Returns: - e : float
Void ratio corresponding to current permeability.
Examples
>>> a = CkPermeabilityModel(Ck=1.5, ka=10, ea=4) >>> a.e_from_k(8.0) 3.854...
Array Inputs:
>>> a.e_from_k(np.array([8.0, 4.0])) array([3.854..., 3.403...])
-
k_from_e
(e, **kwargs)[source]¶ Permeability from void ratio
Parameters: - e : float
Void ratio.
Returns: - k : float
Permeability corresponding to current void ratio.
Examples
>>> a = CkPermeabilityModel(Ck=1.5, ka=10, ea=4) >>> a.k_from_e(3.855) 8.0...
Array Inputs
>>> a.k_from_e(np.array([3.855, 3.404])) array([8.0..., 4.0...])
-
class
geotecha.constitutive_models.void_ratio_permeability.
ConstantPermeabilityModel
(ka)[source]¶ Bases:
geotecha.constitutive_models.void_ratio_permeability.PermeabilityVoidRatioRelationship
Permeability constant with void ratio
Note that the method e_from_k is meaningless because there are multiple e values for single k value.
Parameters: - ka : float
Permeability.
Methods
e_and_k_for_plotting
(**kwargs)Void ratio and permeability that plot the model e_from_k
(k, **kwarks)Void ratio from permeability, parameters are irrelevant. k_from_e
(e, **kwargs)Permeability from void ratio plot_model
(**kwargs)Plot the void ratio-permeability -
e_and_k_for_plotting
(**kwargs)[source]¶ Void ratio and permeability that plot the model
Parameters: - npts : int, optional
Number of points to return. Default npts=100
- xmin, xmax : float, optional
Range of x (i.e. effective stress) values from which to return points. Default xmin=1, xmax=100.
Returns: - x, y : 1d ndarray
npts permeability, and void ratio values between xmin and xmax.
-
class
geotecha.constitutive_models.void_ratio_permeability.
FunctionPermeabilityModel
(fn_e_from_k, fn_k_from_e, *args, **kwargs)[source]¶ Bases:
geotecha.constitutive_models.void_ratio_permeability.PermeabilityVoidRatioRelationship
Functional definition of permeability void-ratio realationship
User provides python functions.
Parameters: - fn_e_from_k: callable object
Function to obtain void ratio from permeability. fn_e_from_k should be the inverse function of fn_k_from_e.
- fn_k_from_e : callable object
Function to obtain peremability from void ratio. fn_k_from_e should be the inverse function of fn_e_from_k.
- *args, **kwargs : anything
Positional and keyword arguments to be passed to the fn_e_from_k, fn_k_from_efunctions. Note that any additional args and kwargs passed to the functions will be appended to the args, and kwargs. You may get into a mess for example with e_from_k because normally the first postional argument passed to such fucntions is k. If you add your own positional arguments, then k will be after you own arguments. Just be aware that the usual way to call methods of the base object PermeabilityVoidRatioRelationship a single positonal arguement, e.g. k, e, followed by any required keyword arguments.
Notes
Any function should be able to accept additonal keywords.
Examples
>>> def efk(k, b=2): ... return k * b >>> def kfe(e, b=2): ... return e / b >>> a = FunctionPermeabilityModel(efk, kfe, b=5) >>> a.e_from_k(3) 15 >>> a.k_from_e(15) 3.0
Methods
e_and_k_for_plotting
(**kwargs)Void ratio and permeability that plot the method e_from_k
(estress, **kwargs)Void ratio from permeability k_from_e
(e, **kwargs)Permeability from void ratio plot_model
(**kwargs)Plot the void ratio-permeability
-
class
geotecha.constitutive_models.void_ratio_permeability.
PermeabilityVoidRatioRelationship
[source]¶ Bases:
object
Base class for defining permeability void ratio relationships
Methods
e_and_k_for_plotting
(**kwargs)Void ratio and permeability that plot the method e_from_k
(estress, **kwargs)Void ratio from permeability k_from_e
(e, **kwargs)Permeability from void ratio plot_model
(**kwargs)Plot the void ratio-permeability
-
class
geotecha.constitutive_models.void_ratio_permeability.
PwiseLinearPermeabilityModel
(ka, ea, xlog=False, ylog=False, xbase=10, ybase=10)[source]¶ Bases:
geotecha.constitutive_models.void_ratio_permeability.PermeabilityVoidRatioRelationship
Piecewise linear ratio permeability relationship
x and y data can be interpolated natural-natural, natural-log10, log10-natural, or log10, log10.
Parameters: - ka, ea : 1d array
Permeability values and void ratio values defining a one-to-one relationship.
- xlog, ylog : True/False, Optional
If True then interpolation on each axis is assumed to be logarithmic with base 10. x refers to the peremability axis, y to the void ratio axis. Default xlog=ylog=False.
Methods
e_and_k_for_plotting
(**kwargs)Void ratio and permeability that plot the model e_from_k
(k, **kwargs)Void ratio from permeability k_from_e
(e, **kwargs)Permeability from void ratio plot_model
(**kwargs)Plot the void ratio-permeability -
e_and_k_for_plotting
(**kwargs)[source]¶ Void ratio and permeability that plot the model
Parameters: - npts : int, optional
Number of points to return. Default npts=100.
- xmin, xmax : float, optional
Range of x (i.e. effective stress) values from which to return points. Default min and max of model ka.
Returns: - x, y : 1d ndarray
npts permeability, and void ratio values between xmin and xmax.
-
e_from_k
(k, **kwargs)[source]¶ Void ratio from permeability
Parameters: - k : float
Current permeability.
Returns: - e : float
Void ratio corresponding to current permeability.
Examples
>>> a = PwiseLinearPermeabilityModel(ka=np.array([1.0, 2.0]), ea=np.array([5, 7.0])) >>> a.e_from_k(1.25) 5.5
Array Inputs:
>>> a.e_from_k(np.array([1.25, 1.75])) array([5.5, 6.5])
Logarithmic permeability scale:
>>> a = PwiseLinearPermeabilityModel(ka=np.array([1.0, 2.0]), ... ea=np.array([5, 7.0]), xlog=True) >>> a.e_from_k(1.25) 5.643... >>> a.e_from_k(np.array([1.25, 1.75])) array([5.643..., 6.614...])
Logarithmic void ratio scale:
>>> a = PwiseLinearPermeabilityModel(ka=np.array([1.0, 2.0]), ... ea=np.array([5, 7.0]), ylog=True) >>> a.e_from_k(1.25) 5.4387... >>> a.e_from_k(np.array([1.25, 1.75])) array([5.4387..., 6.435...])
Logarithmic permeability and void ratio scale:
>>> a = PwiseLinearPermeabilityModel(ka=np.array([1.0, 2.0]), ... ea=np.array([5, 7.0]), xlog=True, ylog=True) >>> a.e_from_k(1.25) 5.572... >>> a.e_from_k(np.array([1.25, 1.75])) array([5.572..., 6.560...])
Increasing vs decreasing inputs:
>>> ea = np.arange(1,10) >>> ka = 3 * ea >>> np.isclose(PwiseLinearPermeabilityModel(ka, ea).e_from_k(7.2), ... PwiseLinearPermeabilityModel(ka[::-1], ea[::-1]).e_from_k(7.2)) True
-
k_from_e
(e, **kwargs)[source]¶ Permeability from void ratio
Parameters: - e : float
Void ratio.
Returns: - k : float
Permeability corresponding to current void ratio.
Examples
>>> a = PwiseLinearPermeabilityModel(ka=np.array([1.0, 2.0]), ea=np.array([5, 7.0])) >>> a.k_from_e(5.5) 1.25
Array Inputs:
>>> a.k_from_e(np.array([5.5, 6.5])) array([1.25, 1.75])
Logarithmic permeability scale:
>>> a = PwiseLinearPermeabilityModel(ka=np.array([1.0, 2.0]), ... ea=np.array([5, 7.0]), xlog=True) >>> a.k_from_e(5.644) 1.25...
>>> a.k_from_e(np.array([5.644, 6.615])) array([1.25..., 1.75...])
Logarithmic void ratio scale:
>>> a = PwiseLinearPermeabilityModel(ka=np.array([1.0, 2.0]), ... ea=np.array([5, 7.0]), ylog=True) >>> a.k_from_e(5.4388) 1.25...
>>> a.k_from_e(np.array([5.4388, 6.436])) array([1.25..., 1.75...])
Logarithmic permeability and void ratio scale:
>>> a = PwiseLinearPermeabilityModel(ka=np.array([1.0, 2.0]), ... ea=np.array([5, 7.0]), xlog=True, ylog=True) >>> a.k_from_e(5.573) 1.25... >>> a.k_from_e(np.array([5.573, 6.561])) array([1.25..., 1.75...])
Increasing vs decreasing inputs:
>>> ea = np.arange(1,10) >>> ka = 3 * ea >>> np.isclose(PwiseLinearPermeabilityModel(ka, ea).k_from_e(3.0), ... PwiseLinearPermeabilityModel(ka[::-1], ea[::-1]).k_from_e(3.0)) True