#!/usr/bin/env python
# geotecha - A software suite for geotechncial engineering
# Copyright (C) 2018 Rohan T. Walker (rtrwalker@gmail.com)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see http://www.gnu.org/licenses/gpl.html.
"""
Multilayer consolidation with vertical drains including well resistance
using the spectral Galerkin method.
"""
from __future__ import division, print_function
import geotecha.plotting.one_d #import MarkersDashesColors as MarkersDashesColors
import time
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import geotecha.speccon.speccon1d as speccon1d
import geotecha.piecewise.piecewise_linear_1d as pwise
from geotecha.piecewise.piecewise_linear_1d import PolyLine
import geotecha.speccon.integrals as integ
import geotecha.mathematics.transformations as transformations
from geotecha.inputoutput.inputoutput import GenericInputFileArgParser
[docs]class Speccon1dVRW(speccon1d.Speccon1d):
"""Multilayer consolidation with vertical drains including well resistance
using the spectral Galerkin method.
Features:
- Multiple layers.
- Vertical and radial drainage in a unit cell.
(radial drainage uses the eta method).
- Finite permeability in the drain i.e. well resistance
- Material properties that are constant in time but piecewsie linear with
depth (including drain permeability).
- Surcharge loading (vacuum loading is via specifying non-zero negative
pore pressure at top and bottom of drain.
- Non-zero top and bottom pore pressure boundary conditions (top and
bottom pore pressures are the same in the drain and soil).
- Pumping from a point source (point source in 1D is pumping from line
at fixed depth).
- Pore pressure at specified depths a function of time.
- Surcharge/Boundary Conditions/Pumping/Fixed Pore Pressures vary
with time in a piecewise-linear function multiplied by a cosine
function of time.
- Surcharge can also vary piecewise linear with depth.
The depth dependence does not vary with time.
- Mulitple loads will be combined using superposition.
- Subset of Python syntax available in input files/strings allowing
basic calculations within input files.
- Output:
- Excess pore pressure at depth in soil and drain.
- Average excess pore pressure between two depths.
- Settlement between two depths.
- Charts and csv output available.
- Program can be run as script or in a python interpreter.
.. warning::
The 'Parameters' and 'Attributes' sections below require further
explanation. The parameters listed below are not used to explicitly
initialize the object. Rather they are defined in either a
multi-line string or a file-like object using python syntax; the
file/string is then used to initialize the object using the
`reader` parameter. As well as simple assignment statements
(H = 1, drn = 0 etc.), the input file/string can contain basic
calculations (z = np.linspace(0,H, 20) etc.). Not all of the
listed parameters are needed. The user should pick an appropriate
combination of attributes for their analysis (minimal explicit
checks on input data will be performed).
Each 'parameter' will be turned into an attribute that
can be accessed using conventional python dot notation, after the
object has been initialised. The attributes listed below are
calculated values (i.e. they could be interpreted as results) which
are accessible using dot notation after all calculations are
complete.
Parameters
----------
H : float, optional
Total height of soil profile. Default H=1.0. Note that even though
this program deals with normalised depth values it is important to
enter the correct H valu, as it is used when plotting, outputing
data and in normalising gradient boundary conditions (see
`bot_vs_time` below) and pumping velocities (see `pumping` below).
mvref : float, optional
Reference value of volume compressibility mv (used with `H` in
settlement calculations). Default mvref=1.0. Note mvref will be used
to normalise pumping velocities (see `pumping` below).
kvref : float, optional
Reference value of vertical permeability kv (only used for pretty
output). Default kvref=1.0.
khref : float, optional
Reference value of horizontal permeability kh (only used for
pretty output). Default khref=1.0.
kwref : float, optional
Reference value of well permeability kw (only used for
pretty output). Default kwref=1.0.
etref : float, optional
Reference value of lumped drain parameter et (only used for pretty
output). Default etref=1.0. et = 2 / (mu * re^2) where mu is
smear-zone/geometry parameter and re is radius of influence of
vertical drain.
drn : {0, 1}, optional
drainage boundary condition. Default drn=0.
0 = Pervious top pervious bottom (PTPB).
1 = Pervious top impoervious bottom (PTIB).
dT : float, optional
Convienient normaliser for time factor multiplier. Default dT=1.0.
neig : int, optional
Number of series terms to use in solution. Default neig=2. Don't use
neig=1.
dTv : float, optional
Vertical reference time factor multiplier. dTv is calculated with
the chosen reference values of kv and mv: dTv = kv /(mv*gamw) / H ^ 2
dTh : float, optional
horizontal reference time factor multiplier. dTh is calculated with
the reference values of kh, et, and mv: dTh = kh / (mv * gamw) * et
dTw : float, optional
Well reference time factor multiplier. dTw is calculated with
the chosen reference values of kw and mv:
dTw = kw /(mv*gamw) / H ^ 2 / (n**2 - 1) where n is the ratio of
drain influence radius to drain radius, re/rw.
mv : PolyLine, optional
Normalised volume compressibility PolyLine(depth, mv).
kh : PolyLine, optional
Normalised horizontal permeability PolyLine(depth, kh).
kv : PolyLine , optional
Normalised vertical permeability PolyLine(depth, kv).
kw : PolyLine , optional
Normalised vertical permeability in drain PolyLine(depth, kw).
et : PolyLine, optional
Normalised vertical drain parameter PolyLine(depth, et).
et = 2 / (mu * re^2) where mu is smear-zone/geometry parameter and re
is radius of influence of vertical drain.
surcharge_vs_depth : list of Polyline, optional
Surcharge variation with depth. PolyLine(depth, multiplier).
surcharge_vs_time : list of Polyline, optional
Surcharge magnitude variation with time. PolyLine(time, magnitude).
surcharge_omega_phase : list of 2 element tuples, optional
(omega, phase) to define cyclic variation of surcharge. i.e.
mag_vs_time * cos(omega*t + phase). If surcharge_omega_phase is None
then cyclic component will be ignored. If surcharge_omega_phase is a
list then if any member is None then cyclic component will not be
applied for that load combo.
top_vs_time : list of Polyline, optional
Top p.press variation with time. Polyline(time, magnitude).
top_omega_phase : list of 2 element tuples, optional
(omega, phase) to define cyclic variation of top BC. i.e.
mag_vs_time * cos(omega*t + phase). If top_omega_phase is None
then cyclic component will be ignored. If top_omega_phase is a
list then if any member is None then cyclic component will not be
applied for that load combo.
bot_vs_time : list of Polyline, optional
Bottom p.press variation with time. Polyline(time, magnitude).
When drn=1, i.e. PTIB, bot_vs_time is equivilent to saying
D[u(H,t), z] = bot_vs_time. Within the program the actual gradient
will be normalised with depth by multiplying H.
bot_omega_phase : list of 2 element tuples, optional
(omega, phase) to define cyclic variation of bot BC. i.e.
mag_vs_time * cos(omega*t + phase). If bot_omega_phase is None
then cyclic component will be ignored. If bot_omega_phase is a
list then if any member is None then cyclic component will not be
applied for that load combo.
fixed_ppress : list of 3 element tuple, optional
(zfixed, pseudo_k, PolyLine(time, magnitude)). zfixed is the
normalised z at which pore pressure is fixed. pseudo_k is a
permeability-like coefficient that controls how quickly the pore
pressure reduces to the fixed value (pseudo_k should be as high as
possible without causing numerical difficulties). If the third
element of the tuple is None then the pore pressure will be fixed at
zero rather than a prescribed mag_vs_time PolyLine.
fixed_ppress_omega_phase : list of 2 element tuples, optional
(omega, phase) to define cyclic variation of fixed ppress. i.e.
mag_vs_time * cos(omega*t + phase). If fixed_ppress _omega_phase is
None then cyclic component will be ignored. If
fixed_ppress_omega_phase is a list then if any member is None then
cyclic component will not be applied for that load combo.
pumping : list of 2 element tuple
(zpump, mag_vs_time). `zpump` is the normalised
z at which pumping takes place. The mag_vs_time polyline should be
the actual pumping velocity. Within the program the actual pumping
velocity will be normalised by dividing by (mvref * H).
Negative values of vp will pump fluid out of the model, positive
values of vp will pump fluid into the model.
pumping_omega_phase : list of 2 element tuples, optional
(omega, phase) to define cyclic variation of pumping velocity. i.e.
mag_vs_time * cos(omega*t + phase). If pumping_omega_phase is
None then cyclic component will be ignored. If pumping_omega_phase is
a list then if any member is None then cyclic component will not be
applied for that load combo.
ppress_z : list_like of float, optional
Normalised z to calculate pore pressure at.
avg_ppress_z_pairs : list of two element list of float, optional
Nomalised zs to calculate average pore pressure between
e.g. average of all profile is [[0,1]].
settlement_z_pairs : list of two element list of float, optional
Normalised depths to calculate normalised settlement between.
e.g. surface settlement would be [[0, 1]].
tvals : list of float
Times to calculate output at.
ppress_z_tval_indexes : list/array of int, slice, optional
Indexes of `tvals` at which to calculate ppress_z. i.e. only calculate
ppress_z at a subset of the `tvals` values.
Default ppress_z_tval_indexes=slice(None, None) i.e. use all the
`tvals`.
avg_ppress_z_pairs_tval_indexes : list/array of int, slice, optional
Indexes of `tvals` at which to calculate avg_ppress_z_pairs.
i.e. only calc avg_ppress_z_pairs at a subset of the `tvals` values.
Default avg_ppress_z_pairs_tval_indexes=slice(None, None) i.e. use
all the `tvals`.
settlement_z_pairs_tval_indexes : list/array of int, slice, optional
Indexes of `tvals` at which to calculate settlement_z_pairs.
i.e. only calc settlement_z_pairs at a subset of the `tvals` values.
Default settlement_z_pairs_tval_indexes=slice(None, None) i.e. use
all the `tvals`.
implementation : ['scalar', 'vectorized','fortran'], optional
Where possible use the stated implementation type. 'scalar'=
python loops (slowest), 'vectorized' = numpy (fast), 'fortran' =
fortran extension (fastest). Note only some functions have multiple
implementations.
RLzero : float, optional
Reduced level of the top of the soil layer. If RLzero is not None
then all depths (in plots and results) will be transformed to an RL
by RL = RLzero - z*H. If RLzero is None (i.e. the default) then all
depths will be reported z*H (i.e. positive numbers).
plot_properties : dict of dict, optional
Dictionary that overrides some of the plot properties.
Each member of `plot_properties` will correspond to one of the plots.
================== ============================================
plot_properties description
================== ============================================
por dict of prop to pass to pore pressure plot.
porwell dict of prop to pass to well p.press plot.
avp dict of prop to pass to average pore
pressure plot.
set dict of prop to pass to settlement plot.
load dict of prop to pass to loading plot.
material dict of prop to pass to materials plot.
================== ============================================
see geotecha.plotting.one_d.plot_vs_depth and
geotecha.plotting.one_d.plot_vs_time for options to specify in
each plot dict.
save_data_to_file : True/False, optional
If True data will be saved to file. Default save_data_to_file=False
save_figures_to_file : True/False
If True then figures will be saved to file.
Default save_figures_to_file=False
show_figures : True/False, optional
If True the after calculation figures will be shown on screen.
Default show_figures=False.
directory : string, optional
Path to directory where files should be stored.
Default directory=None which
will use the current working directory. Note if you keep getting
directory does not exist errors then try putting an r before the
string definition. i.e. directory = r'C:\\Users\\...'
overwrite : True/False, optional
If True then existing files will be overwritten.
Default overwrite=False.
prefix : string, optional
Filename prefix for all output files. Default prefix= 'out'
create_directory : True/Fase, optional
If True a new sub-folder with name based on `prefix` and an
incremented number will contain the output
files. Default create_directory=True.
data_ext : string, optional
File extension for data files. Default data_ext='.csv'
input_ext : string, optional
File extension for original and parsed input files. default = ".py"
figure_ext : string, optional
File extension for figures. Can be any valid matplotlib option for
savefig. Default figure_ext=".eps". Others include 'pdf', 'png'.
title : str, optional
A title for the input file. This will appear at the top of data files.
Default title=None, i.e. no title.
author : str, optional
Author of analysis. Default author='unknown'.
Attributes
----------
por : ndarray, only present if ppress_z is input
Calculated pore pressure at depths corresponding to `ppress_z` and
times corresponding to `tvals`. This is an output array of
size (len(ppress_z), len(tvals[ppress_z_tval_indexes])).
avp : ndarray, only present if avg_ppress_z_pairs is input
Calculated average pore pressure between depths corresponding to
`avg_ppress_z_pairs` and times corresponding to `tvals`. This is an
output array of size
(len(avg_ppress_z_pairs), len(tvals[avg_ppress_z_pairs_tval_indexes])).
set : ndarray, only present if settlement_z_pairs is input
Settlement between depths corresponding to `settlement_z_pairs` and
times corresponding to `tvals`. This is an output array of size
(len(avg_ppress_z_pairs), len(tvals[settlement_z_pairs_tval_indexes]))
Notes
-----
**Gotchas**
All the loading terms e.g. surcharge_vs_time, surcharge_vs_depth,
surcharge_omega_phase can be either a single value or a list of values.
The corresponding lists that define a load must have the same length
e.g. if specifying multiple surcharge loads then surcharge_vs_time and
surcharge_vs_depth must be lists of the same length such that
surcharge_vs_time[0] can be paired with surcharge_vs_depth[0],
surcharge_vs_time[1] can be paired with surcharge_vs_depth[1], etc.
**Material and geometric properties**
- :math:`k_v` is vertical permeability.
- :math:`k_h` is horizontal permeability.
- :math:`k_w` is vertical permeability in drain/well.
- :math:`m_v` is volume compressibility.
- :math:`\\eta` is the radial drainage parameter
:math:`\\eta = \\frac{2}{r_e^2 \\mu}`.
- :math:`r_e` is influence radius of drain.
- :math:`r_w` is drain radius.
- :math:`n=r_e/r_w` is ratio of influence radius to drain radius.
- :math:`\\mu` is any of the smear zone geometry parameters dependent
on the distribution of permeabilit in the smear zone (see
geotecha.consolidation.smear_zones).
- :math:`\\gamma_w` is the unit weight of water.
- :math:`Z` is the nomalised depth (:math:`Z=z/H`).
- :math:`H` is the total height of the soil profile.
**Governing equation**
The two equations governing excess pore pressure at normalised depth
:math:`Z` and time :math:`t`, in the soil and drain
:math:`u\\left({Z, t}\\right)`, and :math:`u_w\\left({Z, t}\\right)`
are:
.. math::
\\overline{m}_v u,_t
+ dT_h\\overline{k}_h\\overline{\\eta}u
- dT_v\\left({\\overline{k}_v u,_Z}\\right),_Z
+ k_f u \\delta \\left({Z-Z_f}\\right)
= \\overline{m}_v \\sigma,_t
+ dT_h\\overline{k}_h\\overline{\\eta}u_w
- v_p\\delta\\left({Z-Z_p}\\right)
/ \\left({H m_{v\\textrm{ref}}}\\right)
+ k_f u_f \\delta \\left({Z-Z_f}\\right)
.. math::
dT_h\\overline{k}_h\\overline{\\eta}u_w
- dT_w\\left({\\overline{k}_w u,_Z}\\right),_Z
= dT_h\\overline{k}_h\\overline{\\eta}u
where
.. math::
dT_v = \\frac{k_{v\\textrm{ref}}}
{H^2 m_{v\\textrm{ref}} \\gamma_w}
.. math::
dT_w = \\frac{k_{w\\textrm{ref}}}
{H^2 m_{v\\textrm{ref}} \\gamma_w}
\\frac{1}{n^2 - 1}
.. math::
dT_h = \\frac{k_{h\\textrm{ref}} \\eta_{\\textrm{ref}}}
{m_{v\\textrm{ref}} \\gamma_w}
.. math:: \\eta = \\frac{2}{r_e^2 \\mu}
:math:`\\mu` is any of the smear zone geometry parameters dependent on
the distribution of permeabilit in the smear zone (see
geotecha.consolidation.smear_zones).
The overline notation represents a depth dependent property normalised
by the relevant reference property. e.g.
:math:`\\overline{k}_v = k_v\\left({z}\\right) / k_{v\\textrm{ref}}`.
A comma followed by a subscript represents differentiation with respect to
the subscripted variable e.g.
:math:`u,_Z = u\\left({Z,t}\\right) / \\partial Z`.
:math:`v_p` is the pumping velocity at depth :math:`Z_p`. :math:`u_f` is
the fixed pore pressure at depth :math:`Z_f`. :math:`k_f` controls how
quickly the 'fixed' pore pressure responds to changes (use a very high
value for 'instantaneuous` response.)
**Non-zero Boundary conditions**
The following two sorts of boundary conditions (identical in in both the
soil and drain) can be modelled:
.. math::
\\left.u\\left({Z,t}\\right)\\right|_{Z=0} = u^{\\textrm{top}}\\left({t}\\right)
\\textrm{ and }
\\left.u\\left({Z,t}\\right)\\right|_{Z=1} = u^{\\textrm{bot}}\\left({t}\\right)
.. math::
\\left.u\\left({Z,t}\\right)\\right|_{Z=0} = u^{\\textrm{top}}\\left({t}\\right)
\\textrm{ and }
\\left.u\\left({Z,t}\\right),_Z\\right|_{Z=1} = u^{\\textrm{bot}}\\left({t}\\right)
The boundary conditions are incorporated by homogenising the governing
equation with the following substitution (same process for the drain):
.. math::
u\\left({Z,t}\\right)
= \\hat{u}\\left({Z,t}\\right) + u_b\\left({Z,t}\\right)
where for the two types of non zero boundary boundary conditions:
.. math::
u_b\\left({Z,t}\\right)
= u^{\\textrm{top}}\\left({t}\\right) \\left({1-Z}\\right)
+ u^{\\textrm{bot}}\\left({t}\\right) Z
.. math::
u_b\\left({Z,t}\\right)
= u^{\\textrm{top}}\\left({t}\\right)
+ u^{\\textrm{bot}}\\left({t}\\right) Z
**Time and depth dependence of loads/material properties**
Soil properties do not vary with time.
Loads are formulated as the product of separate time and depth
dependant functions as well as a cyclic component:
.. math:: \\sigma\\left({Z,t}\\right)=
\\sigma\\left({Z}\\right)
\\sigma\\left({t}\\right)
\\cos\\left(\\omega t + \\phi\\right)
:math:`\\sigma\\left(t\\right)` is a piecewise linear function of time
that within the kth loading stage is defined by the load magnitude at
the start and end of the stage:
.. math::
\\sigma\\left(t\\right)
= \\sigma_k^{\\textrm{start}}
+ \\frac{\\sigma_k^{\\textrm{end}}
- \\sigma_k^{\\textrm{start}}}
{t_k^{\\textrm{end}}
- t_k^{\\textrm{start}}}
\\left(t - t_k^{\\textrm{start}}\\right)
The depth dependence of loads and material property
:math:`a\\left(Z\\right)` is a piecewise linear function
with respect to :math:`Z`, that within a layer are defined by:
.. math::
a\\left(z\\right)
= a_t + \\frac{a_b - a_t}{z_b - z_t}\\left(z - z_t\\right)
with :math:`t` and :math:`b` subscripts representing 'top' and 'bottom' of
each layer respectively.
References
----------
The genesis of this work is from research carried out by
Dr. Rohan Walker, Prof. Buddhima Indraratna and others
at the University of Wollongong, NSW, Austrlia, [1]_, [2]_, [3]_, [4]_.
.. [1] Walker, Rohan. 2006. 'Analytical Solutions for Modeling Soft
Soil Consolidation by Vertical Drains'. PhD Thesis, Wollongong,
NSW, Australia: University of Wollongong.
.. [2] Walker, R., and B. Indraratna. 2009. 'Consolidation Analysis of
a Stratified Soil with Vertical and Horizontal Drainage Using the
Spectral Method'. Geotechnique 59 (5) (January): 439-449.
doi:10.1680/geot.2007.00019.
.. [3] Walker, Rohan, Buddhima Indraratna, and Nagaratnam Sivakugan. 2009.
'Vertical and Radial Consolidation Analysis of Multilayered
Soil Using the Spectral Method'. Journal of Geotechnical and
Geoenvironmental Engineering 135 (5) (May): 657-663.
doi:10.1061/(ASCE)GT.1943-5606.0000075.
.. [4] Walker, Rohan T. 2011. Vertical Drain Consolidation Analysis
in One, Two and Three Dimensions'. Computers and
Geotechnics 38 (8) (December): 1069-1077.
doi:10.1016/j.compgeo.2011.07.006.
"""
def _setup(self):
self._attributes = (
'H drn dT neig mvref kvref khref etref dTh dTv dTw '
'mv kh kv kw et '
'surcharge_vs_depth surcharge_vs_time '
'top_vs_time bot_vs_time '
'ppress_z avg_ppress_z_pairs settlement_z_pairs tvals '
'implementation ppress_z_tval_indexes '
'avg_ppress_z_pairs_tval_indexes settlement_z_pairs_tval_indexes '
'fixed_ppress surcharge_omega_phase '
'fixed_ppress_omega_phase top_omega_phase bot_omega_phase '
'pumping pumping_omega_phase '
'RLzero '
'prefix '
).split()
self._attribute_defaults = {
'H': 1.0, 'drn': 0, 'dT': 1.0, 'neig': 2, 'mvref':1.0,
'kvref': 1.0, 'khref': 1.0, 'etref': 1.0, 'kwref': 1.0,
'implementation': 'vectorized',
'ppress_z_tval_indexes': slice(None, None),
'avg_ppress_z_pairs_tval_indexes': slice(None, None),
'settlement_z_pairs_tval_indexes': slice(None, None),
'prefix': 'speccon1dvrw_'
}
self._attributes_that_should_be_lists= (
'surcharge_vs_depth surcharge_vs_time surcharge_omega_phase '
'top_vs_time top_omega_phase '
'bot_vs_time bot_omega_phase '
'fixed_ppress fixed_ppress_omega_phase '
'pumping pumping_omega_phase').split()
self._attributes_that_should_have_same_x_limits = [
'mv kv kh kw et surcharge_vs_depth'.split()]
self._attributes_that_should_have_same_len_pairs = [
'surcharge_vs_depth surcharge_vs_time'.split(),
'surcharge_vs_time surcharge_omega_phase'.split(),
'top_vs_time top_omega_phase'.split(),
'bot_vs_time bot_omega_phase'.split(),
'fixed_ppress_omega_phase fixed_ppress'.split(),
'pumping pumping_omega_phase'.split()] #pairs that should have the same length
self._attributes_to_force_same_len = [
"surcharge_vs_time surcharge_omega_phase".split(),
"fixed_ppress fixed_ppress_omega_phase".split(),
"top_vs_time top_omega_phase".split(),
"bot_vs_time bot_omega_phase".split(),
"pumping pumping_omega_phase".split()]
self._zero_or_all = [
'dTv kv'.split(),
'surcharge_vs_depth surcharge_vs_time'.split(),
]
self._at_least_one = [
['dTh'],
['dTw'],
['mv'],
('surcharge_vs_time top_vs_time '
'bot_vs_time fixed_ppress pumping').split(),
['tvals'],
'ppress_z avg_ppress_z_pairs settlement_z_pairs'.split()]
self._one_implies_others = [
('surcharge_omega_phase surcharge_vs_depth '
'surcharge_vs_time').split(),
'fixed_ppress_omega_phase fixed_ppress'.split(),
'top_omega_phase top_vs_time'.split(),
'bot_omega_phase bot_vs_time'.split(),
'pumping_omega_phase pumping'.split(),
'dTh kh et'.split(),
'dTw kw'.split(),]
#these explicit initializations are just to make coding easier
self.H = self._attribute_defaults.get('H', None)
self.drn = self._attribute_defaults.get('drn', None)
self.dT = self._attribute_defaults.get('dT', None)
self.neig = self._attribute_defaults.get('neig', None)
self.mvref = self._attribute_defaults.get('mvref', None)
self.kvref = self._attribute_defaults.get('kvref', None)
self.khref = self._attribute_defaults.get('khref', None)
self.kwref = self._attribute_defaults.get('kwref', None)
self.etref = self._attribute_defaults.get('etref', None)
self.dTh = None
self.dTv = None
self.dTw = None
self.mv = None
self.kh = None
self.kv = None
self.et = None
self.surcharge_vs_depth = None
self.surcharge_vs_time = None
self.surcharge_omega_phase = None
self.top_vs_time = None
self.top_omega_phase = None
self.bot_vs_time = None
self.bot_omega_phase = None
self.fixed_ppress_omega_phase = None
self.fixed_ppress = None
self.pumping = None
self.pumping_omega_phase=None
self.ppress_z = None
self.avg_ppress_z_pairs = None
self.settlement_z_pairs = None
self.tvals = None
self.RLzero = None
self.plot_properties = (
self._attribute_defaults.get('plot_properties', None))
self.ppress_z_tval_indexes = (
self._attribute_defaults.get('ppress_z_tval_indexes', None))
self.avg_ppress_z_pairs_tval_indexes = (
self._attribute_defaults.get('avg_ppress_z_pairs_tval_indexes',
None))
self.settlement_z_pairs_tval_indexes = (
self._attribute_defaults.get('settlement_z_pairs_tval_indexes',
None))
return
[docs] def make_time_independent_arrays(self):
"""make all time independent arrays
See Also
--------
self._make_m : make the basis function eigenvalues
self._make_gam : make the mv dependent gamma matrix
self._make_psi : make the kv, kh, et dependent psi matrix
self._make_eigs_and_v : make eigenvalues, eigenvectors and I_gamv
"""
self._make_m()
self._make_gam()
self._make_psi()
self._make_psi_w()
self._make_eigs_and_v()
return
[docs] def make_time_dependent_arrays(self):
"""make all time dependent arrays
See Also
--------
self.make_E_Igamv_the()
"""
self.tvals = np.asarray(self.tvals)
self.make_E_Igamv_the()
self.v_E_Igamv_the=np.dot(self.v, self.E_Igamv_the)
return
[docs] def make_output(self):
"""make all output"""
header1 = "program: speccon1d_vr; geotecha version: {}; author: {}; date: {}\n".format(self.version, self.author, time.strftime('%Y/%m/%d %H:%M:%S'))
if not self.title is None:
header1+= "{}\n".format(self.title)
self._grid_data_dicts = []
if not self.ppress_z is None:
self._make_por()
z = transformations.depth_to_reduced_level(
np.asarray(self.ppress_z), self.H, self.RLzero)
labels = ['{:.3g}'.format(v) for v in z]
d = {'name': '_data_por',
'data': self.por.T,
'row_labels': self.tvals[self.ppress_z_tval_indexes],
'row_labels_label': 'Time',
'column_labels': labels,
'header': header1 + 'Pore pressure at depth'}
self._grid_data_dicts.append(d)
self._make_porwell()
d = {'name': '_data_porwell',
'data': self.porwell.T,
'row_labels': self.tvals[self.ppress_z_tval_indexes],
'row_labels_label': 'Time',
'column_labels': labels,
'header': header1 + 'Drain pore pressure at depth'}
self._grid_data_dicts.append(d)
if not self.avg_ppress_z_pairs is None:
self._make_avp()
z_pairs = transformations.depth_to_reduced_level(
np.asarray(self.avg_ppress_z_pairs), self.H, self.RLzero)
labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs]
d = {'name': '_data_avp',
'data': self.avp.T,
'row_labels': self.tvals[self.avg_ppress_z_pairs_tval_indexes],
'row_labels_label': 'Time',
'column_labels': labels,
'header': header1 + 'Average pore pressure between depths'}
self._grid_data_dicts.append(d)
if not self.settlement_z_pairs is None:
self._make_set()
z_pairs = transformations.depth_to_reduced_level(
np.asarray(self.settlement_z_pairs), self.H, self.RLzero)
labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs]
d = {'name': '_data_set',
'data': self.set.T,
'row_labels': self.tvals[self.settlement_z_pairs_tval_indexes],
'row_labels_label': 'Time',
'column_labels': labels,
'header': header1 + 'settlement between depths'}
self._grid_data_dicts.append(d)
return
def _make_m(self):
"""make the basis function eigenvalues
m in u = sin(m * Z)
Notes
-----
.. math:: m_i =\\pi*\\left(i+1-drn/2\\right)
for :math:`i = 1\:to\:neig-1`
"""
if sum(v is None for v in[self.neig, self.drn])!=0:
raise ValueError('neig and/or drn is not defined')
self.m = integ.m_from_sin_mx(np.arange(self.neig), self.drn)
return
def _make_gam(self):
"""make the mv dependant gam matrix
Parameters
----------
None
Returns
-------
None
Notes
-----
Creates the :math: `\Gam` matrix which occurs in the following equation:
.. math:: \\mathbf{\\Gamma}\\mathbf{A}'=\\mathbf{\\Psi A}+loading\\:terms
`self.gam`, :math:`\Gamma` is given by:
.. math:: \\mathbf{\Gamma}_{i,j}=\\int_{0}^1{{m_v\\left(z\\right)}{sin\\left({m_j}z\\right)}{sin\\left({m_i}z\\right)}\,dz}
"""
self.gam = integ.pdim1sin_af_linear(self.m,self.mv, implementation=self.implementation)
self.gam[np.abs(self.gam)<1e-8]=0.0
return
def _make_psi_w(self):
"""make dTh, dTv kw, and kh, et dependant psi_w matrix
"""
self.psi_w = np.zeros((self.neig, self.neig))
#kw part
if sum([v is None for v in [self.kw, self.dTw]])==0:
self.psi_w -= self.dTw / self.dT * integ.pdim1sin_D_aDf_linear(self.m, self.kw, implementation=self.implementation)
#kh & et part
self.psi_w += self.psi_s
return
def _make_psi(self):
"""make kv, kh, et dependant psi matrix
Notes
-----
Creates the :math: `\Psi` matrix which occurs in the following equation:
.. math:: \\mathbf{\\Gamma}\\mathbf{A}'=\\mathbf{\\Psi A}+loading\\:terms
`self.psi`, :math:`\Psi` is given by:
.. math:: \\mathbf{\Psi}_{i,j}=dT_h\\mathbf{A}_{i,j}=\\int_{0}^1{{k_h\\left(z\\right)}{\eta\\left(z\\right)}\\phi_i\\phi_j\\,dz}-dT_v\\int_{0}^1{\\frac{d}{dz}\\left({k_z\\left(z\\right)}\\frac{d\\phi_j}{dz}\\right)\\phi_i\\,dz}
"""
self.psi = np.zeros((self.neig, self.neig))
#kv part
if sum([v is None for v in [self.kv, self.dTv]])==0:
self.psi -= (self.dTv / self.dT *
integ.pdim1sin_D_aDf_linear(self.m, self.kv,
implementation=self.implementation))
#kh & et part
if sum([v is None for v in [self.kh, self.et, self.dTh]])==0:
kh, et = pwise.polyline_make_x_common(self.kh, self.et)
self.psi_s = (self.dTh / self.dT *
integ.pdim1sin_abf_linear(self.m, self.kh, self.et,
implementation=self.implementation))
self.psi += self.psi_s
#fixed pore pressure part
if not self.fixed_ppress is None:
for (zfixed, pseudo_k, mag_vs_time) in self.fixed_ppress:
self.psi += (pseudo_k / self.dT *
np.sin(self.m[:, np.newaxis] * zfixed) *
np.sin(self.m[np.newaxis, :] * zfixed))
return
def _make_eigs_and_v(self):
"""make Igam_psi, v and eigs, and Igamv, psi_s_Ipsi_w
Finds the eigenvalues, `self.eigs`, and eigenvectors, `self.v` of
inverse(gam)*psi. Once found the matrix inverse(gamma*v), `self.Igamv`
is determined.
Notes
-----
From the original equation
.. math:: \\mathbf{\\Gamma}\\mathbf{A}'=\\mathbf{\\Psi A}+loading\\:terms
`self.eigs` and `self.v` are the eigenvalues and eigenvegtors of the matrix `self.Igam_psi`
.. math:: \\left(\\mathbf{\\Gamma}^{-1}\\mathbf{\\Psi}\\right)
"""
self.Ipsi_w = np.linalg.inv(self.psi_w)
self.psi_s_Ipsi_w = np.dot(self.psi_s, self.Ipsi_w)
self.psi -= np.dot(self.psi_s_Ipsi_w, self.psi_s)
self.psi[np.abs(self.psi) < 1e-8]=0.0
Igam_psi = np.dot(np.linalg.inv(self.gam), self.psi)
self.eigs, self.v = np.linalg.eig(Igam_psi)
self.v = np.asarray(self.v)
self.Igamv = np.linalg.inv(np.dot(self.gam, self.v))
return
[docs] def make_E_Igamv_the(self):
"""sum contributions from all loads
Calculates all contributions to E*inverse(gam*v)*theta part of solution
u=phi*vE*inverse(gam*v)*theta. i.e. surcharge, vacuum, top and bottom
pore pressure boundary conditions. `make_load_matrices will create
`self.E_Igamv_the`. `self.E_Igamv_the` is an array
of size (neig, len(tvals)). So the columns are the column array
E*inverse(gam*v)*theta calculated at each output time. This will allow
us later to do u = phi*v*self.E_Igamv_the
See Also
--------
_make_E_Igamv_the_surcharge : surchage contribution
_make_E_Igamv_the_BC : top boundary pore pressure contribution
_make_E_Igamv_the_bot : bottom boundary pore pressure contribution
"""
self.E_Igamv_the = np.zeros((self.neig,len(self.tvals)))
if sum([v is None for v in [self.surcharge_vs_depth,
self.surcharge_vs_time]])==0:
self._make_E_Igamv_the_surcharge()
self.E_Igamv_the += self.E_Igamv_the_surcharge
if not self.top_vs_time is None or not self.bot_vs_time is None:
self._make_E_Igamv_the_BC()
self.E_Igamv_the += self.E_Igamv_the_BC
if not self.fixed_ppress is None:
self._make_E_Igamv_the_fixed_ppress()
self.E_Igamv_the +=self.E_Igamv_the_fixed_ppress
if not self.pumping is None:
self._make_E_Igamv_the_pumping()
self.E_Igamv_the += self.E_Igamv_the_pumping
return
def _make_E_Igamv_the_surcharge(self):
"""make the surcharge loading matrices
Make the E*inverse(gam*v)*theta part of solution u=phi*vE*inverse(gam*v)*theta.
The contribution of each surcharge load is added and put in
`self.E_Igamv_the_surcharge`. `self.E_Igamv_the_surcharge` is an array
of size (neig, len(tvals)). So the columns are the column array
E*inverse(gam*v)*theta calculated at each output time. This will allow
us later to do u = phi*v*self.E_Igamv_the_surcharge
Notes
-----
Assuming the load are formulated as the product of separate time and depth
dependant functions:
.. math:: \\sigma\\left({Z,t}\\right)=\\sigma\\left({Z}\\right)\\sigma\\left({t}\\right)
the solution to the consolidation equation using the spectral method has
the form:
.. math:: u\\left(Z,t\\right)=\\mathbf{\\Phi v E}\\left(\\mathbf{\\Gamma v}\\right)^{-1}\\mathbf{\\theta}
`_make_E_Igamv_the_surcharge` will create `self.E_Igamv_the_surcharge` which is
the :math:`\\mathbf{E}\\left(\\mathbf{\\Gamma v}\\right)^{-1}\\mathbf{\\theta}`
part of the solution for all surcharge loads
"""
self.E_Igamv_the_surcharge = (
speccon1d.dim1sin_E_Igamv_the_aDmagDt_bilinear(self.m,
self.eigs, self.tvals, self.Igamv, self.mv,
self.surcharge_vs_depth, self.surcharge_vs_time,
self.surcharge_omega_phase, self.dT,
implementation=self.implementation))
return
def _make_E_Igamv_the_fixed_ppress(self):
"""make the fixed pore pressure loading matrices
"""
self.E_Igamv_the_fixed_ppress = np.zeros((self.neig, len(self.tvals)))
if not self.fixed_ppress is None:
zvals = [v[0] for v in self.fixed_ppress]
pseudo_k = [v[1] for v in self.fixed_ppress]
mag_vs_time = [v[2] for v in self.fixed_ppress]
# self.E_Igamv_the_fixed_ppress += (
# speccon1d.dim1sin_E_Igamv_the_deltamag_linear(self.m,
# self.eigs, self.tvals, self.Igamv, zvals, pseudo_k,
# mag_vs_time, self.fixed_ppress_omega_phase, self.dT,
# implementation=self.implementation))
np.add(self.E_Igamv_the_fixed_ppress, (
speccon1d.dim1sin_E_Igamv_the_deltamag_linear(self.m,
self.eigs, self.tvals, self.Igamv, zvals, pseudo_k,
mag_vs_time, self.fixed_ppress_omega_phase, self.dT,
implementation=self.implementation)), out=self.E_Igamv_the_fixed_ppress, casting='unsafe')
def _make_E_Igamv_the_pumping(self):
"""make the pumping loading matrices
"""
self.E_Igamv_the_pumping = np.zeros((self.neig, len(self.tvals)))
if not self.pumping is None:
zvals = [v[0] for v in self.pumping]
pseudo_k = [1 for v in self.pumping]
# mag_vs_time = [v[1] for v in self.pumping]
#dividing by mvref*H is because input pumping velocities need to
# normalised
mag_vs_time = [v[1] / (self.mvref * self.H) for v in self.pumping]
# self.E_Igamv_the_pumping += (
# speccon1d.dim1sin_E_Igamv_the_deltamag_linear(self.m,
# self.eigs, self.tvals, self.Igamv, zvals, pseudo_k,
# mag_vs_time, self.pumping_omega_phase, self.dT,
# implementation=self.implementation))
np.add(self.E_Igamv_the_pumping, (
speccon1d.dim1sin_E_Igamv_the_deltamag_linear(self.m,
self.eigs, self.tvals, self.Igamv, zvals, pseudo_k,
mag_vs_time, self.pumping_omega_phase, self.dT,
implementation=self.implementation)), out=self.E_Igamv_the_pumping, casting='unsafe')
def _normalised_bot_vs_time(self):
"""Normalise bot_vs_time when drn=1, i.e. bot_vs_time is a gradient
Multiplie each bot_vs_time PolyLine by self.H
Returns
-------
bot_vs_time : list of Polylines, or None
bot_vs_time normalised by H
"""
if not self.bot_vs_time is None:
if self.drn == 1:
bot_vs_time = [vs_time * self.H for vs_time
in self.bot_vs_time]
else:
bot_vs_time = self.bot_vs_time
else:
bot_vs_time = None
return bot_vs_time
def _make_E_Igamv_the_BC(self):
"""make the boundary condition loading matrices
"""
self.E_Igamv_the_BC = np.zeros((self.neig, len(self.tvals)))
#mv * du/dt component
#self.E_Igamv_the_BC -= speccon1d.dim1sin_E_Igamv_the_BC_aDfDt_linear(self.drn, self.m, self.eigs, self.mv, self.top_vs_time, self.bot_vs_time, self.tvals, self.Igamv, self.dT)
bot_vs_time = self._normalised_bot_vs_time()
self.E_Igamv_the_BC -= (
speccon1d.dim1sin_E_Igamv_the_BC_aDfDt_linear(self.drn,
self.m, self.eigs, self.tvals, self.Igamv, self.mv,
self.top_vs_time, bot_vs_time, self.top_omega_phase,
self.bot_omega_phase, self.dT,
implementation=self.implementation))
#note: dTh * kh * et * u component cancels with the
# dTh * kh * et * w component
#dTv * d/dZ(kv * du/dZ) component
if sum([v is None for v in [self.kv, self.dTv]])==0:
if self.dTv!=0:
self.E_Igamv_the_BC += (self.dTv *
speccon1d.dim1sin_E_Igamv_the_BC_D_aDf_linear(self.drn,
self.m, self.eigs, self.tvals, self.Igamv, self.kv,
self.top_vs_time, bot_vs_time,
self.top_omega_phase, self.bot_omega_phase, self.dT,
implementation=self.implementation))
#the pseudo_k * delta(z-zfixed)*u component, i.e. the fixed_ppress part
if not self.fixed_ppress is None:
zvals = [v[0] for v in self.fixed_ppress]
pseudo_k = [v[1] for v in self.fixed_ppress]
self.E_Igamv_the_BC -= (
speccon1d.dim1sin_E_Igamv_the_BC_deltaf_linear(self.drn,
self.m, self.eigs, self.tvals, self.Igamv, zvals,
pseudo_k, self.top_vs_time, bot_vs_time,
self.top_omega_phase, self.bot_omega_phase, self.dT,
implementation=self.implementation))
#well resistance component
#dTw * d/dZ(kw * du/dZ) component
if sum([v is None for v in [self.kw, self.dTw]])==0:
if self.dTw!=0:
Igamv_psi_s_Ipsi_w = np.dot(self.Igamv, self.psi_s_Ipsi_w)
self.E_Igamv_the_BC += (self.dTw *
speccon1d.dim1sin_E_Igamv_the_BC_D_aDf_linear(self.drn,
self.m, self.eigs, self.tvals, Igamv_psi_s_Ipsi_w,
self.kw, self.top_vs_time, bot_vs_time,
self.top_omega_phase, self.bot_omega_phase, self.dT,
implementation=self.implementation))
def _make_por(self):
"""make the pore pressure output
makes `self.por`, the average pore pressure at depths corresponding to
self.ppress_z and times corresponding to self.tvals. `self.por` has size
(len(ppress_z), len(tvals)).
Notes
-----
Solution to consolidation equation with spectral method for pore pressure at depth is :
.. math:: u\\left(Z,t\\right)=\\mathbf{\\Phi v E}\\left(\\mathbf{\\Gamma v}\\right)^{-1}\\mathbf{\\theta}+u_{top}\\left({t}\\right)\\left({1-Z}\\right)+u_{bot}\\left({t}\\right)\\left({Z}\\right)
For pore pressure :math:`\\Phi` is simply :math:`sin\\left({mZ}\\right)` for each value of m
"""
bot_vs_time = self._normalised_bot_vs_time()
self.por= speccon1d.dim1sin_f(self.m, self.ppress_z,
self.tvals[self.ppress_z_tval_indexes],
self.v_E_Igamv_the[:, self.ppress_z_tval_indexes],
self.drn, self.top_vs_time, bot_vs_time,
self.top_omega_phase, self.bot_omega_phase)
return
def _make_porwell(self):
"""make the well/drain pore pressure output
"""
bot_vs_time = self._normalised_bot_vs_time()
tvals = self.tvals[self.ppress_z_tval_indexes]
#phi * Ipsi_w * psi_s * v_E_Igamv_the part, including BC adjustment
a = np.dot(self.Ipsi_w, self.psi_s)
v_E_Igamv_the = np.dot(a,
self.v_E_Igamv_the[:, self.ppress_z_tval_indexes])
self.porwell = speccon1d.dim1sin_f(self.m, self.ppress_z, tvals,
v_E_Igamv_the, self.drn,
self.top_vs_time, self.bot_vs_time,
self.top_omega_phase, self.bot_omega_phase)
#1/(n**2-1) * (phi * Ipsi_w * psi_s * thetaT(t) + phi * Ipsi_w * psi_s * thetaT(t))
v_E_Igamv_the = speccon1d.dim1sin_foft_Ipsiw_the_BC_D_aDf_linear(
self.drn, self.m, self.eigs, tvals, self.Ipsi_w,
self.kw, self.top_vs_time, bot_vs_time,
self.top_omega_phase, self.bot_omega_phase)
#TODO: not entirely sure about dTw. I think it is needed for the
# theta cv part.
self.porwell += self.dTw * speccon1d.dim1sin_f(self.m, self.ppress_z,
tvals, v_E_Igamv_the, self.drn)
return
def _make_avp(self):
"""calculate average pore pressure
makes `self.avp`, the average pore pressure at depths corresponding to
self.avg_ppress_z_pairs and times corresponding to self.tvals. `self.avp` has size
(len(ppress_z), len(tvals)).
Notes
-----
The average pore pressure between Z1 and Z2 is given by:
.. math:: \\overline{u}\\left(\\left({Z_1,Z_2}\\right),t\\right)=\\int_{Z_1}^{Z_2}{\\mathbf{\\Phi v E}\\left(\\mathbf{\\Gamma v}\\right)^{-1}\\mathbf{\\theta}+u_{top}\\left({t}\\right)\\left({1-Z}\\right)+u_{bot}\\left({t}\\right)\\left({Z}\\right)\,dZ}/\\left({Z_2-Z_1}\\right)
"""
bot_vs_time = self._normalised_bot_vs_time()
self.avp = speccon1d.dim1sin_avgf(self.m, self.avg_ppress_z_pairs,
self.tvals[self.avg_ppress_z_pairs_tval_indexes],
self.v_E_Igamv_the[:,self.avg_ppress_z_pairs_tval_indexes],
self.drn, self.top_vs_time, bot_vs_time,
self.top_omega_phase, self.bot_omega_phase)
return
def _make_set(self):
"""calculate settlement
makes `self.set`, the average pore pressure at depths corresponding to
self.settlement_z_pairs and times corresponding to self.tvals. `self.set` has size
(len(ppress_z), len(tvals)).
Notes
-----
The average settlement between Z1 and Z2 is given by:
.. math:: \\overline{\\rho}\\left(\\left({Z_1,Z_2}\\right),t\\right)=\\int_{Z_1}^{Z_2}{m_v\\left({Z}\\right)\\left({\\sigma\\left({Z,t}\\right)-u\\left({Z,t}\\right)}\\right)\\,dZ}
.. math:: \\overline{\\rho}\\left(\\left({Z_1,Z_2}\\right),t\\right)=\\int_{Z_1}^{Z_2}{m_v\\left({Z}\\right)\\sigma\\left({Z,t}\\right)\\,dZ}+\\int_{Z_1}^{Z_2}{m_v\\left({Z}\\right)\\left({\\mathbf{\\Phi v E}\\left(\\mathbf{\\Gamma v}\\right)^{-1}\\mathbf{\\theta}+u_{top}\\left({t}\\right)\\left({1-Z}\\right)+u_{bot}\\left({t}\\right)\\left({Z}\\right)}\\right)\\,dZ}
"""
bot_vs_time = self._normalised_bot_vs_time()
z1 = np.asarray(self.settlement_z_pairs)[:,0]
z2 = np.asarray(self.settlement_z_pairs)[:,1]
self.set=-speccon1d.dim1sin_integrate_af(
self.m, self.settlement_z_pairs,
self.tvals[self.settlement_z_pairs_tval_indexes],
self.v_E_Igamv_the[:,self.settlement_z_pairs_tval_indexes],
self.drn, self.mv, self.top_vs_time, bot_vs_time,
self.top_omega_phase, self.bot_omega_phase)
if not self.surcharge_vs_time is None:
self.set += pwise.pxa_ya_cos_multiply_integrate_x1b_x2b_y1b_y2b_multiply_x1c_x2c_y1c_y2c_between_super(self.surcharge_vs_time, self.surcharge_vs_depth, self.mv, self.tvals[self.settlement_z_pairs_tval_indexes], z1, z2, omega_phase = self.surcharge_omega_phase, achoose_max=True)
self.set *= self.H * self.mvref
return
def _plot_porwell(self):
"""plot depth vs well/drain pore pressure for various times
"""
t = self.tvals[self.ppress_z_tval_indexes]
line_labels = ['{:.3g}'.format(v) for v in t]
por_prop = self.plot_properties.pop('porwell', dict())
if not 'xlabel' in por_prop:
por_prop['xlabel'] = 'Drain Pore pressure'
#to do
fig_porwell = geotecha.plotting.one_d.plot_vs_depth(self.porwell,
self.ppress_z,
line_labels=line_labels, H = self.H,
RLzero=self.RLzero,
prop_dict=por_prop)
return fig_porwell
def _plot_por(self):
"""plot depth vs pore pressure for various times
"""
t = self.tvals[self.ppress_z_tval_indexes]
line_labels = ['{:.3g}'.format(v) for v in t]
por_prop = self.plot_properties.pop('por', dict())
if not 'xlabel' in por_prop:
por_prop['xlabel'] = 'Pore pressure'
#to do
fig_por = geotecha.plotting.one_d.plot_vs_depth(self.por,
self.ppress_z,
line_labels=line_labels, H = self.H,
RLzero=self.RLzero,
prop_dict=por_prop)
return fig_por
def _plot_avp(self):
"""plot average pore pressure vs time for various depth intervals
"""
t = self.tvals[self.avg_ppress_z_pairs_tval_indexes]
z_pairs = transformations.depth_to_reduced_level(
np.asarray(self.avg_ppress_z_pairs), self.H, self.RLzero)
line_labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs]
avp_prop = self.plot_properties.pop('avp', dict())
if not 'ylabel' in avp_prop:
avp_prop['ylabel'] = 'Average pore pressure'
fig_avp = geotecha.plotting.one_d.plot_vs_time(t, self.avp.T,
line_labels=line_labels,
prop_dict=avp_prop)
return fig_avp
def _plot_set(self):
"""plot settlement vs time for various depth intervals
"""
t = self.tvals[self.settlement_z_pairs_tval_indexes]
z_pairs = transformations.depth_to_reduced_level(
np.asarray(self.settlement_z_pairs), self.H, self.RLzero)
line_labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs]
set_prop = self.plot_properties.pop('set', dict())
if not 'ylabel' in set_prop:
set_prop['ylabel'] = 'Settlement'
fig_set = geotecha.plotting.one_d.plot_vs_time(t, self.set.T,
line_labels=line_labels,
prop_dict=set_prop)
fig_set.gca().invert_yaxis()
return fig_set
[docs] def produce_plots(self):
"""produce plots of analysis"""
geotecha.plotting.one_d.pleasing_defaults()
# matplotlib.rcParams['figure.dpi'] = 80
# matplotlib.rcParams['savefig.dpi'] = 80
matplotlib.rcParams.update({'font.size': 11})
matplotlib.rcParams.update({'font.family': 'serif'})
self._figures=[]
#por and porwell
if not self.ppress_z is None:
f=self._plot_por()
title = 'fig_por'
f.set_label(title)
f.canvas.manager.set_window_title(title)
self._figures.append(f)
f=self._plot_porwell()
title = 'fig_porwell'
f.set_label(title)
f.canvas.manager.set_window_title(title)
self._figures.append(f)
if not self.avg_ppress_z_pairs is None:
f=self._plot_avp()
title = 'fig_avp'
f.set_label(title)
f.canvas.manager.set_window_title(title)
self._figures.append(f)
#settle
if not self.settlement_z_pairs is None:
f=self._plot_set()
title = 'fig_set'
f.set_label(title)
f.canvas.manager.set_window_title(title)
self._figures.append(f)
#loads
f=self._plot_loads()
title = 'fig_loads'
f.set_label(title)
f.canvas.manager.set_window_title(title)
self._figures.append(f)
#materials
f=self._plot_materials()
self._figures.append(f)
title = 'fig_materials'
f.set_label(title)
f.canvas.manager.set_window_title(title)
def _plot_materials(self):
material_prop = self.plot_properties.pop('material', dict())
z_x=[]
xlabels=[]
if not self.mv is None:
z_x.append(self.mv)
xlabels.append('$m_v/\\overline{{m}}_v$, $\\left'
'(\\overline{{m}}_v={:g}\\right)$'.format(self.mvref))
if not self.kv is None:
z_x.append(self.kv)
xlabels.append('$k_v/\\overline{{k}}_v$, $\\left(\\overline{{k}}_v={:g}\\right)$'.format(self.kvref))
if not self.kh is None:
z_x.append(self.kh)
xlabels.append('$k_h/\\overline{{k}}_h$, $\\left(\\overline{{k}}_h={:g}\\right)$'.format(self.khref))
if not self.kw is None:
z_x.append(self.kw)
xlabels.append('$k_w/\\overline{{k}}_w$, $\\left(\\overline{{k}}_w={:g}\\right)$'.format(self.kwref))
if not self.et is None:
z_x.append(self.et)
xlabels.append('$\\eta/\\overline{{\\eta}}$, $\\left(\\overline{{\\eta}}={:g}\\right)$'.format(self.etref))
return (geotecha.plotting.one_d.plot_single_material_vs_depth(z_x,
xlabels, H = self.H,
RLzero = self.RLzero,prop_dict = material_prop))
def _plot_loads(self):
"""plot loads
"""
load_prop = self.plot_properties.pop('load', dict())
load_triples=[]
load_names = []
ylabels=[]
#surcharge
if not self.surcharge_vs_time is None:
load_names.append('surch')
ylabels.append('Surcharge')
load_triples.append(
[(vs_time, vs_depth, omega_phase) for
vs_time, vs_depth, omega_phase in
zip(self.surcharge_vs_time, self.surcharge_vs_depth,
self.surcharge_omega_phase)])
# if not self.vacuum_vs_time is None:
# load_names.append('vac')
# ylabels.append('Vacuum')
# load_triples.append(
# [(vs_time, vs_depth, omega_phase) for
# vs_time, vs_depth, omega_phase in
# zip(self.vacuum_vs_time, self.vacuum_vs_depth,
# self.vacuum_omega_phase)])
if not self.top_vs_time is None:
load_names.append('top')
ylabels.append('Top boundary')
load_triples.append(
[(vs_time, ([0],[1]), omega_phase) for
vs_time, omega_phase in
zip(self.top_vs_time, self.top_omega_phase)])
if not self.bot_vs_time is None:
#TODO: maybe if drn = 1, multiply bot_vs_time by H to give actual
# gradient rather than normalised.
load_names.append('bot')
ylabels.append('Bot boundary')
load_triples.append(
[(vs_time, ([1],[1]), omega_phase) for
vs_time, omega_phase in
zip(self.bot_vs_time, self.bot_omega_phase)])
if not self.fixed_ppress is None:
load_names.append('fixed p')
ylabels.append('Fixed ppress')
fixed_ppress_triples=[]
for (zfixed, pseudo_k,
vs_time), omega_phase in zip(self.fixed_ppress,
self.fixed_ppress_omega_phase):
if vs_time is None:
vs_time = PolyLine([self.tvals[0], self.tvals[-1]], [0,0])
vs_depth = ([zfixed], [1])
fixed_ppress_triples.append((vs_time,vs_depth, omega_phase))
load_triples.append(fixed_ppress_triples)
if not self.pumping is None:
#TODO: maybe multiply mag_vs_time by H and mvref to atual pumping
#velocity rather than normalised.
# gradient rather than normalised.
load_names.append('pump')
ylabels.append('Pumping velocity')
pumping_triples=[]
for (zpump, vs_time), omega_phase in zip(self.pumping,
self.pumping_omega_phase):
vs_depth = ([zpump], [1])
pumping_triples.append((vs_time, vs_depth, omega_phase))
load_triples.append(pumping_triples)
return (geotecha.plotting.one_d.plot_generic_loads(load_triples,
load_names,
ylabels=ylabels, H = self.H, RLzero=self.RLzero,
prop_dict=load_prop))
[docs]def main():
"""Run speccon1d_vrw as a script"""
a = GenericInputFileArgParser(obj=Speccon1dVRW,
methods=[('make_all', [], {})],
pass_open_file=True)
a.main()
if __name__ == '__main__':
# import nose
# nose.runmodule(argv=['nose', '--verbosity=3', '--with-doctest'])
## nose.runmodule(argv=['nose', '--verbosity=3'])
main()