Source code for geotecha.speccon.speccon1d_vrc

#!/usr/bin/env python
# geotecha - A software suite for geotechncial engineering
# Copyright (C) 2018  Rohan T. Walker (rtrwalker@gmail.com)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see http://www.gnu.org/licenses/gpl.html.

"""
Multilayer consolidation with stone columns including vertical and
radial drainage using the spectral Galerkin method.

"""
from __future__ import division, print_function

import geotecha.plotting.one_d #import MarkersDashesColors as MarkersDashesColors
import time
import numpy as np
import matplotlib
import matplotlib.pyplot as plt

import geotecha.speccon.speccon1d as speccon1d
import geotecha.piecewise.piecewise_linear_1d as pwise
from geotecha.piecewise.piecewise_linear_1d import PolyLine
import geotecha.speccon.integrals as integ
import geotecha.mathematics.transformations as transformations
from geotecha.inputoutput.inputoutput import GenericInputFileArgParser


[docs]class Speccon1dVRC(speccon1d.Speccon1d): """Multilayer consolidation with stone columns including vertical and radial drainage in the column, using the spectral Galerkin method. Features: - Multiple layers. - Vertical and radial drainage in a unit cell. (radial drainage uses the eta method). - Finite vertical and radial permeability in the column. - Material properties that are constant in time but piecewsie linear with depth (including column permeability and stiffness). Soil-column stiffness is modelled using a lumped soil/column volume compressibilty (mv). - Surcharge loading (vacuum loading is via specifying non-zero negative pore pressure at top and bottom of drain. - Non-zero top and bottom pore pressure boundary conditions (top and bottom pore pressures are the same in the column and soil). - Surcharge/Boundary Conditions/vary with time in a piecewise-linear function multiplied by a cosine function of time. - Surcharge can also vary piecewise linear with depth. The depth dependence does not vary with time. - Mulitple loads will be combined using superposition. - Subset of Python syntax available in input files/strings allowing basic calculations within input files. - Output: - Excess pore pressure at depth in soil and column. - Average excess pore pressure between two depths (in soil, column and overall). - Settlement between two depths. - Charts and csv output available. - Program can be run as script or in a python interpreter. - Note there is no pumping or fixed pore pressure functionality. .. warning:: The 'Parameters' and 'Attributes' sections below require further explanation. The parameters listed below are not used to explicitly initialize the object. Rather they are defined in either a multi-line string or a file-like object using python syntax; the file/string is then used to initialize the object using the `reader` parameter. As well as simple assignment statements (H = 1, drn = 0 etc.), the input file/string can contain basic calculations (z = np.linspace(0, H, 20) etc.). Not all of the listed parameters are needed. The user should pick an appropriate combination of attributes for their analysis (minimal explicit checks on input data will be performed). Each 'parameter' will be turned into an attribute that can be accessed using conventional python dot notation, after the object has been initialised. The attributes listed below are calculated values (i.e. they could be interpreted as results) which are accessible using dot notation after all calculations are complete. Parameters ---------- H : float, optional Total height of soil profile. Default H=1.0. Note that even though this program deals with normalised depth values it is important to enter the correct H valu, as it is used when plotting, outputing data and in normalising gradient boundary conditions (see `bot_vs_time` below). mvref : float, optional Reference value of volume compressibility mv (used with `H` in settlement calculations). Default mvref=1.0. kvref : float, optional Reference value of vertical permeability kv in soil (only used for pretty output). Default kvref=1.0. khref : float, optional Reference value of horizontal permeability kh in soil (only used for pretty output). Default khref=1.0. kvcref : float, optional Reference value of vertical permeability kvc in column (only used for pretty output). Default kvcref=1.0. khcref : float, optional Reference value of horizontal permeability khc in column (only used for pretty output). Default khcref=1.0. etref : float, optional Reference value of lumped drain parameter et (only used for pretty output). Default etref=1.0. et = 2 / (mu * re^2) where mu is smear-zone/geometry parameter and re is radius of influence of vertical drain. drn : {0, 1}, optional drainage boundary condition. Default drn=0. 0 = Pervious top pervious bottom (PTPB). 1 = Pervious top impoervious bottom (PTIB). dT : float, optional Convienient normaliser for time factor multiplier. Default dT=1.0. neig : int, optional Number of series terms to use in solution. Default neig=2. Don't use neig=1. dTv : float, optional Vertical reference time factor multiplier. dTv is calculated with the chosen reference values of kv and mv: dTv = kv /(mv*gamw) / H ^ 2 dTvc : float, optional Well reference time factor multiplier. dTvc is calculated with the chosen reference values of kvc and mv: dTvc = kvc /(mv*gamw) / H ^ 2 dTh : float, optional horizontal reference time factor multiplier. dTh is calculated with the reference values of kh, et, and mv: dTh = kh / (mv * gamw) * et dThc : float, optional Horizontal reference time factor multiplier in column. dThc is calculated with the reference values of khc, and mv: dThc = 8*khc / (mv * gamw) /rc**2. mv : PolyLine Normalised volume compressibility PolyLine(depth, mv). The mv here is the value of ms / (1 + alp * (Y - 1)) normalised by mvref. Y is column to soil stiffness ratio ms/mc or Ec/Es. alp = 1/n**2 where n is the ratio between influence radius and column radius n=re/rw. kh : PolyLine, optional Normalised horizontal permeability in soil PolyLine(depth, kh). kv : PolyLine , optional Normalised vertical permeability in soil PolyLine(depth, kv). khc : PolyLine, optional Normalised horizontal permeability in column PolyLine(depth, kh). kvc : PolyLine , optional Normalised vertical permeability in column PolyLine(depth, kv). et : PolyLine, optional Normalised vertical drain parameter PolyLine(depth, et). et = 2 / (mu * re^2) where mu is smear-zone/geometry parameter and re is radius of influence of vertical drain. surcharge_vs_depth : list of Polyline, optional Surcharge variation with depth. PolyLine(depth, multiplier). surcharge_vs_time : list of Polyline, optional Surcharge magnitude variation with time. PolyLine(time, magnitude). surcharge_omega_phase : list of 2 element tuples, optional (omega, phase) to define cyclic variation of surcharge. i.e. mag_vs_time * cos(omega*t + phase). If surcharge_omega_phase is None then cyclic component will be ignored. If surcharge_omega_phase is a list then if any member is None then cyclic component will not be applied for that load combo. top_vs_time : list of Polyline, optional Top p.press variation with time. Polyline(time, magnitude). top_omega_phase : list of 2 element tuples, optional (omega, phase) to define cyclic variation of top BC. i.e. mag_vs_time * cos(omega*t + phase). If top_omega_phase is None then cyclic component will be ignored. If top_omega_phase is a list then if any member is None then cyclic component will not be applied for that load combo. bot_vs_time : list of Polyline, optional Bottom p.press variation with time. Polyline(time, magnitude). When drn=1, i.e. PTIB, bot_vs_time is equivilent to saying D[u(H,t), z] = bot_vs_time. Within the program the actual gradient will be normalised with depth by multiplying H. bot_omega_phase : list of 2 element tuples, optional (omega, phase) to define cyclic variation of bot BC. i.e. mag_vs_time * cos(omega*t + phase). If bot_omega_phase is None then cyclic component will be ignored. If bot_omega_phase is a list then if any member is None then cyclic component will not be applied for that load combo. ppress_z : list_like of float, optional Normalised z to calculate pore pressure at. avg_ppress_z_pairs : list of two element list of float, optional Nomalised zs to calculate average pore pressure between e.g. average of all profile is [[0,1]]. settlement_z_pairs : list of two element list of float, optional Normalised depths to calculate normalised settlement between. e.g. surface settlement would be [[0, 1]]. tvals : list of float Times to calculate output at. ppress_z_tval_indexes : list/array of int, slice, optional Indexes of `tvals` at which to calculate ppress_z. i.e. only calculate ppress_z at a subset of the `tvals` values. Default ppress_z_tval_indexes=slice(None, None) i.e. use all the `tvals`. avg_ppress_z_pairs_tval_indexes : list/array of int, slice, optional Indexes of `tvals` at which to calculate avg_ppress_z_pairs. i.e. only calc avg_ppress_z_pairs at a subset of the `tvals` values. Default avg_ppress_z_pairs_tval_indexes=slice(None, None) i.e. use all the `tvals`. settlement_z_pairs_tval_indexes : list/array of int, slice, optional Indexes of `tvals` at which to calculate settlement_z_pairs. i.e. only calc settlement_z_pairs at a subset of the `tvals` values. Default settlement_z_pairs_tval_indexes=slice(None, None) i.e. use all the `tvals`. implementation : ['scalar', 'vectorized','fortran'], optional Where possible use the stated implementation type. 'scalar'= python loops (slowest), 'vectorized' = numpy (fast), 'fortran' = fortran extension (fastest). Note only some functions have multiple implementations. RLzero : float, optional Reduced level of the top of the soil layer. If RLzero is not None then all depths (in plots and results) will be transformed to an RL by RL = RLzero - z*H. If RLzero is None (i.e. the default) then all depths will be reported z*H (i.e. positive numbers). plot_properties : dict of dict, optional Dictionary that overrides some of the plot properties. Each member of `plot_properties` will correspond to one of the plots. ================== ============================================ plot_properties description ================== ============================================ por dict of prop to pass to overall pore pressure plot. porc dict of prop to pass to soil pore pressure plot. pors dict of prop to pass to average pore pressure plot. avp dict of prop to pass to overall average pore pressure plot. avps dict of prop to pass to soil average pore pressure plot. avpc dict of prop to pass to c average pore pressure plot. set dict of prop to pass to settlement plot. load dict of prop to pass to loading plot. material dict of prop to pass to materials plot. ================== ============================================ see geotecha.plotting.one_d.plot_vs_depth and geotecha.plotting.one_d.plot_vs_time for options to specify in each plot dict. save_data_to_file : True/False, optional If True data will be saved to file. Default save_data_to_file=False save_figures_to_file : True/False If True then figures will be saved to file. Default save_figures_to_file=False show_figures : True/False, optional If True the after calculation figures will be shown on screen. Default show_figures=False. directory : string, optional Path to directory where files should be stored. Default directory=None which will use the current working directory. Note if you keep getting directory does not exist errors then try putting an r before the string definition. i.e. directory = r'C:\\Users\\...' overwrite : True/False, optional If True then existing files will be overwritten. Default overwrite=False. prefix : string, optional Filename prefix for all output files. Default prefix= 'out' create_directory : True/Fase, optional If True a new sub-folder with name based on `prefix` and an incremented number will contain the output files. Default create_directory=True. data_ext : string, optional File extension for data files. Default data_ext='.csv' input_ext : string, optional File extension for original and parsed input files. default = ".py" figure_ext : string, optional File extension for figures. Can be any valid matplotlib option for savefig. Default figure_ext=".eps". Others include 'pdf', 'png'. title : str, optional A title for the input file. This will appear at the top of data files. Default title=None, i.e. no title. author : str, optional Author of analysis. Default author='unknown'. Attributes ---------- por, porc, pors : ndarray, only present if ppress_z is input Calculated pore pressure at depths corresponding to `ppress_z` and times corresponding to `tvals`. This is an output array of size (len(ppress_z), len(tvals[ppress_z_tval_indexes])). avp, avpc, avps : ndarray, only present if avg_ppress_z_pairs is input Calculated average pore pressure between depths corresponding to `avg_ppress_z_pairs` and times corresponding to `tvals`. This is an output array of size (len(avg_ppress_z_pairs), len(tvals[avg_ppress_z_pairs_tval_indexes])). set : ndarray, only present if settlement_z_pairs is input Settlement between depths corresponding to `settlement_z_pairs` and times corresponding to `tvals`. This is an output array of size (len(avg_ppress_z_pairs), len(tvals[settlement_z_pairs_tval_indexes])) Notes ----- **Gotchas** All the loading terms e.g. surcharge_vs_time, surcharge_vs_depth, surcharge_omega_phase can be either a single value or a list of values. The corresponding lists that define a load must have the same length e.g. if specifying multiple surcharge loads then surcharge_vs_time and surcharge_vs_depth must be lists of the same length such that surcharge_vs_time[0] can be paired with surcharge_vs_depth[0], surcharge_vs_time[1] can be paired with surcharge_vs_depth[1], etc. **Material and geometric properties** - :math:`k_v` is vertical soil permeability. - :math:`k_h` is horizontal soilpermeability. - :math:`k_{vc}` is vertical permeability in column. - :math:`k_{hc}` is horizontal permeability in column. - :math:`m_s` is the volume compressibility in the soil. - :math:`m_c` is the volume compressibility in the column. - :math:`m_v` is lumped volume compressibility. :math:`m_v=m_s/(1+\\alpha(Y-1))`. Stiffness ratio :math:`Y=m_s/m_c=E_c/E_s`. Also :math:`\\alpha=1/n^2`. - :math:`\\eta` is the radial drainage parameter :math:`\\eta = \\frac{2}{r_e^2 \\mu}`. - :math:`r_e` is influence radius of drain. - :math:`r_w` is drain radius. - :math:`n=r_e/r_w` is ratio of influence radius to drain radius. - :math:`\\mu` is any of the smear zone geometry parameters dependent on the distribution of permeabilit in the smear zone (see geotecha.consolidation.smear_zones). - :math:`\\gamma_w` is the unit weight of water. - :math:`Z` is the nomalised depth (:math:`Z=z/H`). - :math:`H` is the total height of the soil profile. **Governing equation** Radially averaged soil and column pore pressures, :math:`u_s`, :math:`u_c` are related to the overall average pore pressure, :math:`u` by: .. math:: u=\\left({1-\\alpha}\\right)u_s + \\alpha u_c where :math:`\\alpha=1-n^2=1-\\left({r_e/r_w}\\right)`. Equal strain in the soil and column requires: .. math:: \\frac{\\varepsilon}{m_{vref}}= \\overline{m}_v \\left[{\\sigma -\\left({1-\\alpha}\\right)u_s -\\alpha u_c}\\right] Continuity of flow in the soil, column, and across the soil-column boundary respectively requires: .. math:: \\frac{\\dot{\\varepsilon}}{m_{vref}}= dT_h\\overline{k}_h\\overline{\\eta}\\left({u_s-\\beta}\\right) - dT_v\\left({\\overline{k}_v u_s,_Z}\\right),_Z .. math:: \\frac{\\dot{\\varepsilon}}{m_{vref}}= dT_{hc}\\overline{k}_{hc}\\left({u_c-\\beta}\\right) - dT_{vc}\\left({\\overline{k}_{vc} u_c,_Z}\\right),_Z .. math:: \\frac{\\dot{\\varepsilon}}{m_{vref}}= \\left({1 - \\alpha}\\right) dT_v\\left({\\overline{k}_v u,_Z}\\right),_Z - \\alpha dT_{vc}\\left({\\overline{k}_{vc} u_c,_Z}\\right),_Z Each pore pressure value is a function of normalised depth :math:`Z` and time :math:`t`. :math:`\\beta` is the pore pressure at the soil/column interface at a particular depth. where .. math:: dT_v = \\frac{k_{v\\textrm{ref}}} {H^2 m_{v\\textrm{ref}} \\gamma_w} .. math:: dT_{vc} = \\frac{k_{vc\\textrm{ref}}} {H^2 m_{v\\textrm{ref}} \\gamma_w} .. math:: dT_{hc} = \\frac{8 k_{hc\\textrm{ref}}} {m_{v\\textrm{ref}} \\gamma_w r_c^2} .. math:: dT_h = \\frac{k_{h\\textrm{ref}} \\eta_{\\textrm{ref}}} {m_{v\\textrm{ref}} \\gamma_w} .. math:: \\eta = \\frac{2}{r_e^2 \\mu} :math:`\\mu` is any of the smear zone geometry parameters dependent on the distribution of permeabilit in the smear zone (see geotecha.consolidation.smear_zones). The overline notation represents a depth dependent property normalised by the relevant reference property. e.g. :math:`\\overline{k}_v = k_v\\left({z}\\right) / k_{v\\textrm{ref}}`. A comma followed by a subscript represents differentiation with respect to the subscripted variable e.g. :math:`u,_Z = u\\left({Z,t}\\right) / \\partial Z`. **Non-zero Boundary conditions** The following two sorts of boundary conditions (identical in in both the soil and column) can be modelled: .. math:: \\left.u\\left({Z,t}\\right)\\right|_{Z=0} = u^{\\textrm{top}}\\left({t}\\right) \\textrm{ and } \\left.u\\left({Z,t}\\right)\\right|_{Z=1} = u^{\\textrm{bot}}\\left({t}\\right) .. math:: \\left.u\\left({Z,t}\\right)\\right|_{Z=0} = u^{\\textrm{top}}\\left({t}\\right) \\textrm{ and } \\left.u\\left({Z,t}\\right),_Z\\right|_{Z=1} = u^{\\textrm{bot}}\\left({t}\\right) The boundary conditions are incorporated by homogenising the governing equation with the following substitution (same process for the column and beta): .. math:: u\\left({Z,t}\\right) = \\hat{u}\\left({Z,t}\\right) + u_b\\left({Z,t}\\right) where for the two types of non zero boundary boundary conditions: .. math:: u_b\\left({Z,t}\\right) = u^{\\textrm{top}}\\left({t}\\right) \\left({1-Z}\\right) + u^{\\textrm{bot}}\\left({t}\\right) Z .. math:: u_b\\left({Z,t}\\right) = u^{\\textrm{top}}\\left({t}\\right) + u^{\\textrm{bot}}\\left({t}\\right) Z **Time and depth dependence of loads/material properties** Soil properties do not vary with time. Loads are formulated as the product of separate time and depth dependant functions as well as a cyclic component: .. math:: \\sigma\\left({Z,t}\\right)= \\sigma\\left({Z}\\right) \\sigma\\left({t}\\right) \\cos\\left(\\omega t + \\phi\\right) :math:`\\sigma\\left(t\\right)` is a piecewise linear function of time that within the kth loading stage is defined by the load magnitude at the start and end of the stage: .. math:: \\sigma\\left(t\\right) = \\sigma_k^{\\textrm{start}} + \\frac{\\sigma_k^{\\textrm{end}} - \\sigma_k^{\\textrm{start}}} {t_k^{\\textrm{end}} - t_k^{\\textrm{start}}} \\left(t - t_k^{\\textrm{start}}\\right) The depth dependence of loads and material property :math:`a\\left(Z\\right)` is a piecewise linear function with respect to :math:`Z`, that within a layer are defined by: .. math:: a\\left(z\\right) = a_t + \\frac{a_b - a_t}{z_b - z_t}\\left(z - z_t\\right) with :math:`t` and :math:`b` subscripts representing 'top' and 'bottom' of each layer respectively. References ---------- The genesis of this work is from research carried out by Dr. Rohan Walker, Prof. Buddhima Indraratna and others at the University of Wollongong, NSW, Austrlia, [1]_, [2]_, [3]_, [4]_. .. [1] Walker, Rohan. 2006. 'Analytical Solutions for Modeling Soft Soil Consolidation by Vertical Drains'. PhD Thesis, Wollongong, NSW, Australia: University of Wollongong. .. [2] Walker, R., and B. Indraratna. 2009. 'Consolidation Analysis of a Stratified Soil with Vertical and Horizontal Drainage Using the Spectral Method'. Geotechnique 59 (5) (January): 439-449. doi:10.1680/geot.2007.00019. .. [3] Walker, Rohan, Buddhima Indraratna, and Nagaratnam Sivakugan. 2009. 'Vertical and Radial Consolidation Analysis of Multilayered Soil Using the Spectral Method'. Journal of Geotechnical and Geoenvironmental Engineering 135 (5) (May): 657-663. doi:10.1061/(ASCE)GT.1943-5606.0000075. .. [4] Walker, Rohan T. 2011. Vertical Drain Consolidation Analysis in One, Two and Three Dimensions'. Computers and Geotechnics 38 (8) (December): 1069-1077. doi:10.1016/j.compgeo.2011.07.006. """ def _setup(self): self._attributes = ( 'H drn dT neig n ' 'mvref kvref kvcref khref khcref etref ' 'dTh dTv dTvc dThc ' 'mv kh kv et khc kvc ' 'surcharge_vs_depth surcharge_vs_time ' 'top_vs_time bot_vs_time ' 'ppress_z avg_ppress_z_pairs settlement_z_pairs tvals ' 'implementation ppress_z_tval_indexes ' 'avg_ppress_z_pairs_tval_indexes settlement_z_pairs_tval_indexes ' 'surcharge_omega_phase ' 'top_omega_phase bot_omega_phase ' 'RLzero ' 'prefix ' ).split() self._attribute_defaults = { 'H': 1.0, 'drn': 0, 'dT': 1.0, 'neig': 2, 'mvref':1.0, 'kvref': 1.0, 'khref': 1.0, 'etref': 1.0, 'kvcref': 1.0, 'khcref': 1.0, 'implementation': 'vectorized', 'ppress_z_tval_indexes': slice(None, None), 'avg_ppress_z_pairs_tval_indexes': slice(None, None), 'settlement_z_pairs_tval_indexes': slice(None, None), 'prefix': 'speccon1dvrc_' } self._attributes_that_should_be_lists= ( 'surcharge_vs_depth surcharge_vs_time surcharge_omega_phase ' 'top_vs_time top_omega_phase ' 'bot_vs_time bot_omega_phase ').split() self._attributes_that_should_have_same_x_limits = [ 'mv kv kh kvc khc et surcharge_vs_depth'.split()] self._attributes_that_should_have_same_len_pairs = [ 'surcharge_vs_depth surcharge_vs_time'.split(), 'surcharge_vs_time surcharge_omega_phase'.split(), 'top_vs_time top_omega_phase'.split(), 'bot_vs_time bot_omega_phase'.split()] self._attributes_to_force_same_len = [ "surcharge_vs_time surcharge_omega_phase".split(), "top_vs_time top_omega_phase".split(), "bot_vs_time bot_omega_phase".split()] self._zero_or_all = [ 'dTv kv'.split(), 'surcharge_vs_depth surcharge_vs_time'.split(), ] self._at_least_one = [ ['dTh'], ['dThc'], ['dTvc'], ['dTv'], ['mv'], ['n'], ('surcharge_vs_time top_vs_time ' 'bot_vs_time').split(), ['tvals'], 'ppress_z avg_ppress_z_pairs settlement_z_pairs'.split()] self._one_implies_others = [ ('surcharge_omega_phase surcharge_vs_depth ' 'surcharge_vs_time').split(), 'top_omega_phase top_vs_time'.split(), 'bot_omega_phase bot_vs_time'.split(), 'dTh kh et'.split(), 'dThc khc'.split(), 'dTvc kvc et'.split(), 'dTv kv'.split(),] #these explicit initializations are just to make coding easier self.H = self._attribute_defaults.get('H', None) self.drn = self._attribute_defaults.get('drn', None) self.dT = self._attribute_defaults.get('dT', None) self.neig = self._attribute_defaults.get('neig', None) self.mvref = self._attribute_defaults.get('mvref', None) self.kvref = self._attribute_defaults.get('kvref', None) self.khref = self._attribute_defaults.get('khref', None) self.kvcref = self._attribute_defaults.get('kvcref', None) self.khcref = self._attribute_defaults.get('khcref', None) self.etref = self._attribute_defaults.get('etref', None) self.dTh = None self.dTv = None self.dThc = None self.dTvc = None self.mv = None self.kh = None self.kv = None self.khc = None self.kvc = None self.et = None self.n = None self.surcharge_vs_depth = None self.surcharge_vs_time = None self.surcharge_omega_phase = None self.top_vs_time = None self.top_omega_phase = None self.bot_vs_time = None self.bot_omega_phase = None self.ppress_z = None self.avg_ppress_z_pairs = None self.settlement_z_pairs = None self.tvals = None self.RLzero = None self.plot_properties = self._attribute_defaults.get('plot_properties', None) self.ppress_z_tval_indexes = self._attribute_defaults.get( 'ppress_z_tval_indexes', None) self.avg_ppress_z_pairs_tval_indexes = self._attribute_defaults.get( 'avg_ppress_z_pairs_tval_indexes', None) self.settlement_z_pairs_tval_indexes = self._attribute_defaults.get( 'settlement_z_pairs_tval_indexes', None) return
[docs] def make_time_independent_arrays(self): """make all time independent arrays See Also -------- self._make_m : make the basis function eigenvalues self._make_gam : make the mv dependent gamma matrix self._make_psi : make the kv, kh, et dependent psi matrix self._make_eigs_and_v : make eigenvalues, eigenvectors and I_gamv """ self.alp = 1 / self.n**2 self._make_m() self._make_gam() self._make_psi() self._make_eigs_and_v() return
[docs] def make_time_dependent_arrays(self): """make all time dependent arrays See Also -------- self.make_E_Igamv_the() """ self.tvals = np.asarray(self.tvals) self.make_E_Igamv_the() self.v_E_Igamv_the = np.dot(self.v, self.E_Igamv_the) return
[docs] def make_output(self): """make all output""" header1 = ("program: speccon1d_vrc; geotecha version: " "{}; author: {}; date: {}\n").format(self.version, self.author, time.strftime('%Y/%m/%d %H:%M:%S')) if not self.title is None: header1+= "{}\n".format(self.title) self._grid_data_dicts = [] if not self.ppress_z is None: self._make_por() z = transformations.depth_to_reduced_level( np.asarray(self.ppress_z), self.H, self.RLzero) labels = ['{:.3g}'.format(v) for v in z] d = {'name': '_data_por', 'data': self.por.T, 'row_labels': self.tvals[self.ppress_z_tval_indexes], 'row_labels_label': 'Time', 'column_labels': labels, 'header': header1 + 'Pore pressure at depth'} self._grid_data_dicts.append(d) d = {'name': '_data_pors', 'data': self.pors.T, 'row_labels': self.tvals[self.ppress_z_tval_indexes], 'row_labels_label': 'Time', 'column_labels': labels, 'header': header1 + 'Pore pressure at depth in soil'} self._grid_data_dicts.append(d) d = {'name': '_data_porc', 'data': self.porc.T, 'row_labels': self.tvals[self.ppress_z_tval_indexes], 'row_labels_label': 'Time', 'column_labels': labels, 'header': header1 + 'Pore pressure at depth in column'} self._grid_data_dicts.append(d) if not self.avg_ppress_z_pairs is None: self._make_avp() z_pairs = transformations.depth_to_reduced_level( np.asarray(self.avg_ppress_z_pairs), self.H, self.RLzero) labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs] d = {'name': '_data_avp', 'data': self.avp.T, 'row_labels': self.tvals[self.avg_ppress_z_pairs_tval_indexes], 'row_labels_label': 'Time', 'column_labels': labels, 'header': header1 + 'Average pore pressure between depths'} self._grid_data_dicts.append(d) d = {'name': '_data_avps', 'data': self.avps.T, 'row_labels': self.tvals[self.avg_ppress_z_pairs_tval_indexes], 'row_labels_label': 'Time', 'column_labels': labels, 'header': header1 + 'Average soil pore pressure between depths'} self._grid_data_dicts.append(d) d = {'name': '_data_avpc', 'data': self.avpc.T, 'row_labels': self.tvals[self.avg_ppress_z_pairs_tval_indexes], 'row_labels_label': 'Time', 'column_labels': labels, 'header': header1 + 'Average column pore pressure between depths'} self._grid_data_dicts.append(d) if not self.settlement_z_pairs is None: self._make_set() z_pairs = transformations.depth_to_reduced_level( np.asarray(self.settlement_z_pairs), self.H, self.RLzero) labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs] d = {'name': '_data_set', 'data': self.set.T, 'row_labels': self.tvals[self.settlement_z_pairs_tval_indexes], 'row_labels_label': 'Time', 'column_labels': labels, 'header': header1 + 'settlement between depths'} self._grid_data_dicts.append(d) return
def _make_m(self): """make the basis function eigenvalues m in u = sin(m * Z) Notes ----- .. math:: m_i =\\pi*\\left(i+1-drn/2\\right) for :math:`i = 1\:to\:neig-1` """ if sum(v is None for v in[self.neig, self.drn])!=0: raise ValueError('neig and/or drn is not defined') self.m = integ.m_from_sin_mx(np.arange(self.neig), self.drn) return def _make_gam(self): """make the mv dependant gam matrix """ self.gam = integ.pdim1sin_af_linear( self.m, self.mv, implementation=self.implementation) self.gam[np.abs(self.gam)<1e-8] = 0.0 return def _make_psi(self): """make all the kv, kh, kvc, khc, et dependant psi matrices """ #psi_sv, kv part if sum([v is None for v in [self.kv, self.dTv]])==0: self.psi_sv = (self.dTv / self.dT * integ.pdim1sin_D_aDf_linear(self.m, self.kv, implementation=self.implementation)) #psi_sh, kh & et part if sum([v is None for v in [self.kh, self.et, self.dTh]])==0: kh, et = pwise.polyline_make_x_common(self.kh, self.et)# self.psi_sh = (self.dTh / self.dT * integ.pdim1sin_abf_linear(self.m, self.kh, self.et, implementation=self.implementation)) #psi_s self.psi_s = self.psi_sh - self.psi_sv #psi_cv, kvc part if sum([v is None for v in [self.kvc, self.dTvc]])==0: self.psi_cv = (self.dTvc / self.dT * integ.pdim1sin_D_aDf_linear(self.m, self.kvc, implementation=self.implementation)) #psi_ch, khc if sum([v is None for v in [self.khc, self.dThc]])==0: self.psi_ch = (self.dThc / self.dT * integ.pdim1sin_af_linear(self.m, self.khc, implementation=self.implementation)) #psi_c self.psi_c = self.psi_ch - self.psi_cv Ibet = np.bmat([[np.diag([1.0 - self.alp] * self.neig), np.diag([self.alp] * self.neig), np.zeros((self.neig, self.neig))], [self.psi_s, -self.psi_c , self.psi_ch - self.psi_sh ], [self.psi_sh - self.alp * self.psi_sv, self.alp * self.psi_cv, -self.psi_sh]]) Ibet = np.asarray(Ibet) # np.bmat returns an array self.bet = np.linalg.inv(Ibet) self.bet00 = self.bet[:self.neig, :self.neig] self.bet01 = self.bet[:self.neig, self.neig:2 * self.neig] self.bet02 = self.bet[:self.neig, 2 * self.neig:] self.bet10 = self.bet[self.neig: 2*self.neig, :self.neig] self.bet11 = self.bet[self.neig: 2*self.neig, self.neig:2 * self.neig] self.bet12 = self.bet[self.neig: 2*self.neig, 2 * self.neig:] self.bet20 = self.bet[2*self.neig:, :self.neig] self.bet21 = self.bet[2*self.neig:, self.neig:2 * self.neig] self.bet22 = self.bet[2*self.neig:, 2 * self.neig:] self.psi = (1 - self.alp) * np.dot(self.psi_sv, self.bet00) self.psi += self.alp * np.dot(self.psi_cv, self.bet10) self.psi *=-1.0 return def _make_eigs_and_v(self): """make Igam_psi, v and eigs, and Igamv Finds the eigenvalues, `self.eigs`, and eigenvectors, `self.v` of inverse(gam)*psi. Once found the matrix inverse(gamma*v), `self.Igamv` is determined. Notes ----- From the original equation .. math:: \\mathbf{\\Gamma}\\mathbf{A}'=\\mathbf{\\Psi A}+loading\\:terms `self.eigs` and `self.v` are the eigenvalues and eigenvegtors of the matrix `self.Igam_psi` .. math:: \\left(\\mathbf{\\Gamma}^{-1}\\mathbf{\\Psi}\\right) """ self.psi[np.abs(self.psi) < 1e-8] = 0.0 Igam_psi = np.dot(np.linalg.inv(self.gam), self.psi) self.eigs, self.v = np.linalg.eig(Igam_psi) self.v = np.asarray(self.v) self.Igamv = np.linalg.inv(np.dot(self.gam, self.v)) return
[docs] def make_E_Igamv_the(self): """sum contributions from all loads Calculates all contributions to E*inverse(gam*v)*theta part of solution u=phi*vE*inverse(gam*v)*theta. i.e. surcharge, vacuum, top and bottom pore pressure boundary conditions. `make_load_matrices will create `self.E_Igamv_the`. `self.E_Igamv_the` is an array of size (neig, len(tvals)). So the columns are the column array E*inverse(gam*v)*theta calculated at each output time. This will allow us later to do u = phi*v*self.E_Igamv_the See Also -------- _make_E_Igamv_the_surcharge : surchage contribution _make_E_Igamv_the_BC : top boundary pore pressure contribution _make_E_Igamv_the_bot : bottom boundary pore pressure contribution """ self.E_Igamv_the = np.zeros((self.neig, len(self.tvals))) if sum([v is None for v in [self.surcharge_vs_depth, self.surcharge_vs_time]])==0: self._make_E_Igamv_the_surcharge() self.E_Igamv_the += self.E_Igamv_the_surcharge if not self.top_vs_time is None or not self.bot_vs_time is None: self._make_E_Igamv_the_BC() self.E_Igamv_the += self.E_Igamv_the_BC return
def _make_E_Igamv_the_surcharge(self): """make the surcharge loading matrices Make the E*inverse(gam*v)*theta part of solution u=phi*vE*inverse(gam*v)*theta. The contribution of each surcharge load is added and put in `self.E_Igamv_the_surcharge`. `self.E_Igamv_the_surcharge` is an array of size (neig, len(tvals)). So the columns are the column array E*inverse(gam*v)*theta calculated at each output time. This will allow us later to do u = phi*v*self.E_Igamv_the_surcharge Notes ----- Assuming the load are formulated as the product of separate time and depth dependant functions: .. math:: \\sigma\\left({Z,t}\\right)=\\sigma\\left({Z}\\right)\\sigma\\left({t}\\right) the solution to the consolidation equation using the spectral method has the form: .. math:: u\\left(Z,t\\right)=\\mathbf{\\Phi v E}\\left(\\mathbf{\\Gamma v}\\right)^{-1}\\mathbf{\\theta} `_make_E_Igamv_the_surcharge` will create `self.E_Igamv_the_surcharge` which is the :math:`\\mathbf{E}\\left(\\mathbf{\\Gamma v}\\right)^{-1}\\mathbf{\\theta}` part of the solution for all surcharge loads """ self.E_Igamv_the_surcharge = ( speccon1d.dim1sin_E_Igamv_the_aDmagDt_bilinear(self.m, self.eigs, self.tvals, self.Igamv, self.mv, self.surcharge_vs_depth, self.surcharge_vs_time, self.surcharge_omega_phase, self.dT, implementation=self.implementation)) return def _normalised_bot_vs_time(self): """Normalise bot_vs_time when drn=1, i.e. bot_vs_time is a gradient Multiplie each bot_vs_time PolyLine by self.H Returns ------- bot_vs_time : list of Polylines, or None bot_vs_time normalised by H """ if not self.bot_vs_time is None: if self.drn == 1: bot_vs_time = ([vs_time * self.H for vs_time in self.bot_vs_time]) else: bot_vs_time = self.bot_vs_time else: bot_vs_time = None return bot_vs_time def _make_E_Igamv_the_BC(self): """make the boundary condition loading matrices """ self.E_Igamv_the_BC = np.zeros((self.neig, len(self.tvals))) bot_vs_time = self._normalised_bot_vs_time() #mv * du/dt component self.E_Igamv_the_BC -= ( speccon1d.dim1sin_E_Igamv_the_BC_aDfDt_linear( self.drn, self.m, self.eigs, self.tvals, self.Igamv, self.mv, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase, self.dT, implementation=self.implementation)) G = np.diag([self.alp]*self.neig) G -= (1-self.alp) * self.psi_sv.dot((self.bet01 + self.alp*self.bet02)) G -= self.alp * self.psi_cv.dot((self.bet11 + self.alp*self.bet12)) #dTv * d/dZ(kv * du/dZ) component if sum([v is None for v in [self.kv, self.dTv]])==0: if self.dTv!=0: self.E_Igamv_the_BC += (self.dTv * speccon1d.dim1sin_E_Igamv_the_BC_D_aDf_linear( self.drn, self.m, self.eigs, self.tvals, self.Igamv.dot(np.identity(self.neig, dtype=float)-G), self.kv, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase, self.dT, implementation=self.implementation)) #dTvc * d/dZ(kvc * du/dZ) component if sum([v is None for v in [self.kvc, self.dTvc]])==0: if self.dTvc!=0: self.E_Igamv_the_BC += (self.dTvc * speccon1d.dim1sin_E_Igamv_the_BC_D_aDf_linear( self.drn, self.m, self.eigs, self.tvals, self.Igamv.dot(np.identity(self.neig, dtype=float)-G), self.kvc, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase, self.dT, implementation=self.implementation)) def _make_por(self): """make the pore pressure output, us, uc, and u makes `self.por`, the average pore pressure at depths corresponding to self.ppress_z and times corresponding to self.tvals. `self.por` has size (len(ppress_z), len(tvals)). Notes ----- Solution to consolidation equation with spectral method for pore pressure at depth is : .. math:: u\\left(Z,t\\right)=\\mathbf{\\Phi v E}\\left(\\mathbf{\\Gamma v}\\right)^{-1}\\mathbf{\\theta}+u_{top}\\left({t}\\right)\\left({1-Z}\\right)+u_{bot}\\left({t}\\right)\\left({Z}\\right) For pore pressure :math:`\\Phi` is simply :math:`sin\\left({mZ}\\right)` for each value of m """ bot_vs_time = self._normalised_bot_vs_time() tvals = self.tvals[self.ppress_z_tval_indexes] #average pore pressure at depth self.por = speccon1d.dim1sin_f(self.m, self.ppress_z, tvals, self.v_E_Igamv_the[:, self.ppress_z_tval_indexes], self.drn, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase) #soil pore poressure at depth self.pors = speccon1d.dim1sin_f(self.m, self.ppress_z, tvals, self.bet00.dot(self.v_E_Igamv_the[:, self.ppress_z_tval_indexes]), self.drn, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase) if not self.top_vs_time is None or not self.bot_vs_time is None: a = self.dTv * speccon1d.dim1sin_foft_Ipsiw_the_BC_D_aDf_linear( self.drn, self.m, self.eigs, tvals, (self.bet01 + self.alp * self.bet02), self.kv, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase) b = self.dTvc * speccon1d.dim1sin_foft_Ipsiw_the_BC_D_aDf_linear( self.drn, self.m, self.eigs, tvals, (self.bet01 + self.alp * self.bet02), self.kvc, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase) self.pors += speccon1d.dim1sin_f(self.m, self.ppress_z, tvals, a+b, self.drn) #column pore pressure at depth self.porc = speccon1d.dim1sin_f(self.m, self.ppress_z, tvals, self.bet10.dot(self.v_E_Igamv_the[:, self.ppress_z_tval_indexes]), self.drn, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase) if not self.top_vs_time is None or not self.bot_vs_time is None: a = self.dTv * speccon1d.dim1sin_foft_Ipsiw_the_BC_D_aDf_linear( self.drn, self.m, self.eigs, tvals, (self.bet11 + self.alp * self.bet12), self.kv, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase) b = self.dTvc * speccon1d.dim1sin_foft_Ipsiw_the_BC_D_aDf_linear( self.drn, self.m, self.eigs, tvals, (self.bet11 + self.alp * self.bet12), self.kvc, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase) self.porc += speccon1d.dim1sin_f(self.m, self.ppress_z, tvals, a+b, self.drn) return def _make_avp(self): """calculate average pore pressure, for us uc and u makes `self.avp`, the average pore pressure at depths corresponding to self.avg_ppress_z_pairs and times corresponding to self.tvals. `self.avp` has size (len(ppress_z), len(tvals)). Notes ----- The average pore pressure between Z1 and Z2 is given by: .. math:: \\overline{u}\\left(\\left({Z_1,Z_2}\\right),t\\right)=\\int_{Z_1}^{Z_2}{\\mathbf{\\Phi v E}\\left(\\mathbf{\\Gamma v}\\right)^{-1}\\mathbf{\\theta}+u_{top}\\left({t}\\right)\\left({1-Z}\\right)+u_{bot}\\left({t}\\right)\\left({Z}\\right)\,dZ}/\\left({Z_2-Z_1}\\right) """ bot_vs_time = self._normalised_bot_vs_time() tvals = self.tvals[self.avg_ppress_z_pairs_tval_indexes] v_E_Igamv_the = self.v_E_Igamv_the[:self.neig, self.avg_ppress_z_pairs_tval_indexes] #average pore pressure at depth self.avp = speccon1d.dim1sin_avgf(self.m, self.avg_ppress_z_pairs, tvals, v_E_Igamv_the, self.drn, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase) #soil pore poressure at depth self.avps = speccon1d.dim1sin_avgf(self.m, self.avg_ppress_z_pairs, tvals, self.bet00.dot(v_E_Igamv_the), self.drn, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase) if not self.top_vs_time is None or not self.bot_vs_time is None: a = self.dTv * speccon1d.dim1sin_foft_Ipsiw_the_BC_D_aDf_linear( self.drn, self.m, self.eigs, tvals, (self.bet01 + self.alp * self.bet02), self.kv, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase) b = self.dTvc * speccon1d.dim1sin_foft_Ipsiw_the_BC_D_aDf_linear( self.drn, self.m, self.eigs, tvals, (self.bet01 + self.alp * self.bet02), self.kvc, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase) self.avps += speccon1d.dim1sin_avgf(self.m, self.avg_ppress_z_pairs, tvals, a+b, self.drn) #column pore pressure at depth self.avpc = speccon1d.dim1sin_avgf(self.m, self.avg_ppress_z_pairs, tvals, self.bet10.dot(v_E_Igamv_the), self.drn, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase) if not self.top_vs_time is None or not self.bot_vs_time is None: a = self.dTv * speccon1d.dim1sin_foft_Ipsiw_the_BC_D_aDf_linear( self.drn, self.m, self.eigs, tvals, (self.bet11 + self.alp * self.bet12), self.kv, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase) b = self.dTvc * speccon1d.dim1sin_foft_Ipsiw_the_BC_D_aDf_linear( self.drn, self.m, self.eigs, tvals, (self.bet11 + self.alp * self.bet12), self.kvc, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase) self.avpc += speccon1d.dim1sin_avgf(self.m, self.avg_ppress_z_pairs, tvals, a+b, self.drn) return def _make_set(self): """calculate settlement makes `self.set`, the average pore pressure at depths corresponding to self.settlement_z_pairs and times corresponding to self.tvals. `self.set` has size (len(ppress_z), len(tvals)). Notes ----- The average settlement between Z1 and Z2 is given by: .. math:: \\overline{\\rho}\\left(\\left({Z_1,Z_2}\\right),t\\right)=\\int_{Z_1}^{Z_2}{m_v\\left({Z}\\right)\\left({\\sigma\\left({Z,t}\\right)-u\\left({Z,t}\\right)}\\right)\\,dZ} .. math:: \\overline{\\rho}\\left(\\left({Z_1,Z_2}\\right),t\\right)=\\int_{Z_1}^{Z_2}{m_v\\left({Z}\\right)\\sigma\\left({Z,t}\\right)\\,dZ}+\\int_{Z_1}^{Z_2}{m_v\\left({Z}\\right)\\left({\\mathbf{\\Phi v E}\\left(\\mathbf{\\Gamma v}\\right)^{-1}\\mathbf{\\theta}+u_{top}\\left({t}\\right)\\left({1-Z}\\right)+u_{bot}\\left({t}\\right)\\left({Z}\\right)}\\right)\\,dZ} """ bot_vs_time = self._normalised_bot_vs_time() z1 = np.asarray(self.settlement_z_pairs)[:,0] z2 = np.asarray(self.settlement_z_pairs)[:,1] self.set = -speccon1d.dim1sin_integrate_af(self.m, self.settlement_z_pairs, self.tvals[self.settlement_z_pairs_tval_indexes], self.v_E_Igamv_the[:,self.settlement_z_pairs_tval_indexes], self.drn, self.mv, self.top_vs_time, bot_vs_time, self.top_omega_phase, self.bot_omega_phase) if not self.surcharge_vs_time is None: self.set += ( pwise.pxa_ya_cos_multiply_integrate_x1b_x2b_y1b_y2b_multiply_x1c_x2c_y1c_y2c_between_super( self.surcharge_vs_time, self.surcharge_vs_depth, self.mv, self.tvals[self.settlement_z_pairs_tval_indexes], z1, z2, omega_phase = self.surcharge_omega_phase, achoose_max=True)) self.set *= self.H * self.mvref return def _plot_pors(self): """plot soil depth vs pore pressure for various times """ t = self.tvals[self.ppress_z_tval_indexes] line_labels = ['{:.3g}'.format(v) for v in t] por_prop = self.plot_properties.pop('pors', dict()) if not 'xlabel' in por_prop: por_prop['xlabel'] = 'Soil pore pressure' #to do fig_por = geotecha.plotting.one_d.plot_vs_depth(self.pors, self.ppress_z, line_labels=line_labels, H = self.H, RLzero=self.RLzero, prop_dict=por_prop) return fig_por def _plot_porc(self): """plot column depth vs pore pressure for various times """ t = self.tvals[self.ppress_z_tval_indexes] line_labels = ['{:.3g}'.format(v) for v in t] porc_prop = self.plot_properties.pop('porc', dict()) if not 'xlabel' in porc_prop: porc_prop['xlabel'] = 'Column pore pressure' #to do fig_porc = geotecha.plotting.one_d.plot_vs_depth(self.porc, self.ppress_z, line_labels=line_labels, H = self.H, RLzero=self.RLzero, prop_dict=porc_prop) return fig_porc def _plot_por(self): """plot depth vs pore pressure for various times """ t = self.tvals[self.ppress_z_tval_indexes] line_labels = ['{:.3g}'.format(v) for v in t] por_prop = self.plot_properties.pop('por', dict()) if not 'xlabel' in por_prop: por_prop['xlabel'] = 'Pore pressure' #to do fig_por = geotecha.plotting.one_d.plot_vs_depth(self.por, self.ppress_z, line_labels=line_labels, H = self.H, RLzero=self.RLzero, prop_dict=por_prop) return fig_por def _plot_avp(self): """plot average pore pressure vs time for various depth intervals """ t = self.tvals[self.avg_ppress_z_pairs_tval_indexes] z_pairs = transformations.depth_to_reduced_level( np.asarray(self.avg_ppress_z_pairs), self.H, self.RLzero) line_labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs] avp_prop = self.plot_properties.pop('avp', dict()) if not 'ylabel' in avp_prop: avp_prop['ylabel'] = 'Average pore pressure' fig_avp = geotecha.plotting.one_d.plot_vs_time(t, self.avp.T, line_labels=line_labels, prop_dict=avp_prop) return fig_avp def _plot_avps(self): """plot average soil pore pressure vs time for various depth intervals """ t = self.tvals[self.avg_ppress_z_pairs_tval_indexes] z_pairs = transformations.depth_to_reduced_level( np.asarray(self.avg_ppress_z_pairs), self.H, self.RLzero) line_labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs] avp_prop = self.plot_properties.pop('avps', dict()) if not 'ylabel' in avp_prop: avp_prop['ylabel'] = 'Average soil pore pressure' fig_avp = geotecha.plotting.one_d.plot_vs_time(t, self.avps.T, line_labels=line_labels, prop_dict=avp_prop) return fig_avp def _plot_avpc(self): """plot average column pore pressure vs time for various depth intervals """ t = self.tvals[self.avg_ppress_z_pairs_tval_indexes] z_pairs = transformations.depth_to_reduced_level( np.asarray(self.avg_ppress_z_pairs), self.H, self.RLzero) line_labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs] avp_prop = self.plot_properties.pop('avpc', dict()) if not 'ylabel' in avp_prop: avp_prop['ylabel'] = 'Average column pore pressure' fig_avp = geotecha.plotting.one_d.plot_vs_time(t, self.avpc.T, line_labels=line_labels, prop_dict=avp_prop) return fig_avp def _plot_set(self): """plot settlement vs time for various depth intervals """ t = self.tvals[self.settlement_z_pairs_tval_indexes] z_pairs = transformations.depth_to_reduced_level( np.asarray(self.settlement_z_pairs), self.H, self.RLzero) line_labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs] set_prop = self.plot_properties.pop('set', dict()) if not 'ylabel' in set_prop: set_prop['ylabel'] = 'Settlement' fig_set = geotecha.plotting.one_d.plot_vs_time(t, self.set.T, line_labels=line_labels, prop_dict=set_prop) fig_set.gca().invert_yaxis() return fig_set
[docs] def produce_plots(self): """produce plots of analysis""" geotecha.plotting.one_d.pleasing_defaults() # matplotlib.rcParams['figure.dpi'] = 80 # matplotlib.rcParams['savefig.dpi'] = 80 matplotlib.rcParams.update({'font.size': 11}) matplotlib.rcParams.update({'font.family': 'serif'}) self._figures=[] #por and porwell if not self.ppress_z is None: f=self._plot_por() title = 'fig_por' f.set_label(title) f.canvas.manager.set_window_title(title) self._figures.append(f) f=self._plot_pors() title = 'fig_pors' f.set_label(title) f.canvas.manager.set_window_title(title) self._figures.append(f) f=self._plot_porc() title = 'fig_porc' f.set_label(title) f.canvas.manager.set_window_title(title) self._figures.append(f) if not self.avg_ppress_z_pairs is None: f=self._plot_avp() title = 'fig_avp' f.set_label(title) f.canvas.manager.set_window_title(title) self._figures.append(f) f=self._plot_avps() title = 'fig_avps' f.set_label(title) f.canvas.manager.set_window_title(title) self._figures.append(f) f=self._plot_avpc() title = 'fig_avpc' f.set_label(title) f.canvas.manager.set_window_title(title) self._figures.append(f) #settle if not self.settlement_z_pairs is None: f=self._plot_set() title = 'fig_set' f.set_label(title) f.canvas.manager.set_window_title(title) self._figures.append(f) #loads f=self._plot_loads() title = 'fig_loads' f.set_label(title) f.canvas.manager.set_window_title(title) self._figures.append(f) #materials f=self._plot_materials() self._figures.append(f) title = 'fig_materials' f.set_label(title) f.canvas.manager.set_window_title(title)
def _plot_materials(self): material_prop = self.plot_properties.pop('material', dict()) z_x=[] xlabels=[] if not self.mv is None: z_x.append(self.mv) xlabels.append('$m_v/\\overline{{m}}_v$, $\\left' '(\\overline{{m}}_v={:g}\\right)$'.format(self.mvref)) if not self.kv is None: z_x.append(self.kv) xlabels.append('$k_v/\\overline{{k}}_v$, $\\left(\\overline{{k}}_v={:g}\\right)$'.format(self.kvref)) if not self.khc is None: z_x.append(self.kvc) xlabels.append('$k_{{vc}}/\\overline{{k}}_{{vc}}$, $\\left(\\overline{{k}}_{{vc}}={:g}\\right)$'.format(self.kvcref)) if not self.kh is None: z_x.append(self.kh) xlabels.append('$k_h/\\overline{{k}}_h$, $\\left(\\overline{{k}}_h={:g}\\right)$'.format(self.khref)) if not self.khc is None: z_x.append(self.khc) xlabels.append('$k_{{hc}}/\\overline{{k}}_{{hc}}$, $\\left(\\overline{{k}}_{{hc}}={:g}\\right)$'.format(self.khcref)) if not self.et is None: z_x.append(self.et) xlabels.append('$\\eta/\\overline{{\\eta}}$, $\\left(\\overline{{\\eta}}={:g}\\right)$'.format(self.etref)) return (geotecha.plotting.one_d.plot_single_material_vs_depth(z_x, xlabels, H = self.H, RLzero = self.RLzero,prop_dict = material_prop)) def _plot_loads(self): """plot loads """ load_prop = self.plot_properties.pop('load', dict()) load_triples=[] load_names = [] ylabels=[] #surcharge if not self.surcharge_vs_time is None: load_names.append('surch') ylabels.append('Surcharge') load_triples.append( [(vs_time, vs_depth, omega_phase) for vs_time, vs_depth, omega_phase in zip(self.surcharge_vs_time, self.surcharge_vs_depth, self.surcharge_omega_phase)]) if not self.top_vs_time is None: load_names.append('top') ylabels.append('Top boundary') load_triples.append( [(vs_time, ([0],[1]), omega_phase) for vs_time, omega_phase in zip(self.top_vs_time, self.top_omega_phase)]) if not self.bot_vs_time is None: #TODO: maybe if drn = 1, multiply bot_vs_time by H to give actual # gradient rather than normalised. load_names.append('bot') ylabels.append('Bot boundary') load_triples.append( [(vs_time, ([1],[1]), omega_phase) for vs_time, omega_phase in zip(self.bot_vs_time, self.bot_omega_phase)]) return (geotecha.plotting.one_d.plot_generic_loads(load_triples, load_names, ylabels=ylabels, H = self.H, RLzero=self.RLzero, prop_dict=load_prop))
[docs]def main(): """Run speccon1d_vrc as a script""" a = GenericInputFileArgParser(obj=Speccon1dVRC, methods=[('make_all', [], {})], pass_open_file=True) a.main()
if __name__ == '__main__': # import nose # nose.runmodule(argv=['nose', '--verbosity=3', '--with-doctest']) ## nose.runmodule(argv=['nose', '--verbosity=3']) main()