Source code for geotecha.speccon.speccon1d_unsat

#!/usr/bin/env python
# geotecha - A software suite for geotechncial engineering
# Copyright (C) 2018  Rohan T. Walker (rtrwalker@gmail.com)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see http://www.gnu.org/licenses/gpl.html.

"""
Multilayer consolidation of unsaturated soil using the spectral Galerkin
method.
"""
from __future__ import division, print_function

import geotecha.plotting.one_d #import MarkersDashesColors as MarkersDashesColors
import time
import numpy as np
import matplotlib
import matplotlib.pyplot as plt

import geotecha.speccon.speccon1d as speccon1d
import geotecha.piecewise.piecewise_linear_1d as pwise
from geotecha.piecewise.piecewise_linear_1d import PolyLine
import geotecha.speccon.integrals as integ
import geotecha.mathematics.transformations as transformations
from geotecha.inputoutput.inputoutput import GenericInputFileArgParser



[docs]class Speccon1dUnsat(speccon1d.Speccon1d): """Multilayer consolidation of unsaturated soil Features: - Multiple layers. - Unsaturated vertical drainage only. - Water and air phases. - Material properties that are constant in time but piecewsie linear with depth. - Surcharge loading. - Independent non-zero top and bottom pore air and pore water pressure boundary conditions. - Surcharge/Boundary Conditions vary with time in a piecewise-linear function multiplied by a cosine function of time. - Surcharge can also vary piecewise linear with depth. The depth dependence does not vary with time. - Mulitple loads will be combined using superposition. - Subset of Python syntax available in input files/strings allowing basic calculations within input files. - Output: - Excess pore air and pore water pressure at depth - Average excess pore air and pore water pressure between depths. - Settlement between depths of air phase, water phase and overall. - Charts and csv output available. - Program can be run as script or in a python interpreter. - Note there is no pumping or fixed pore pressure functionality. .. warning:: The 'Parameters' and 'Attributes' sections below require further explanation. The parameters listed below are not used to explicitly initialize the object. Rather they are defined in either a multi-line string or a file-like object using python syntax; the file/string is then used to initialize the object using the `reader` parameter. As well as simple assignment statements (H = 1, drn = 0 etc.), the input file/string can contain basic calculations (z = np.linspace(0, H, 20) etc.). Not all of the listed parameters are needed. The user should pick an appropriate combination of attributes for their analysis (minimal explicit checks on input data will be performed). Each 'parameter' will be turned into an attribute that can be accessed using conventional python dot notation, after the object has been initialised. The attributes listed below are calculated values (i.e. they could be interpreted as results) which are accessible using dot notation after all calculations are complete. Parameters ---------- H : float, optional Total height of soil profile. Default H=1.0. Note that even though this program deals with normalised depth values it is important to enter the correct H valu, as it is used when plotting, outputing data and in normalising gradient boundary conditions (see `bot_vs_time` below) mvref : float, optional Reference value of volume compressibility mv (used with `H` in settlement calculations). Default mvref=1.0. Note this is used to normalise all the unsaturated volume compressibilities. It is also used in the porosity/saturation term. kwref : float, optional Reference value of water phase vertical permeability kw in soil (only used for pretty output). Default kwref=1.0. Daref : float, optional Reference value of coefficeint of transmission for the air phase (only used for pretty output). Default Daref=1.0. (note ka=Da*g). drn : {0, 1}, optional drainage boundary condition. Default drn=0. 0 = Pervious top pervious bottom (PTPB). 1 = Pervious top impoervious bottom (PTIB). dT : float, optional Convienient normaliser for time factor multiplier. Default dT=1.0. neig : int, optional Number of series terms to use in solution. Default neig=2. Don't use neig=1. dTw : float Vertical reference time factor multiplier for water phase. dTw is calculated with the chosen reference values of kw and mv: dTw = kwref /(mvref*gamw) / H ^ 2 dTa : float Vertical reference time factor multiplier for air phase. dTa is calculated with the chosen reference values of Da and mv: dTa = Daref / (mvref) / (wa/(R*T)/ua_ / H ^ 2. Where wa=molecular mass of air= 28.966e-3 kg/mol for air, R=universal gas constant=8.31432 J/(mol.K), T = absolute temperature in Kelvin=273.16+t0 (K), t0=temperature in celsius, ua_= absolute air pressure=ua+uatm (kPa), ua=guage air pressure, uatm= atmospheric air pressure=101 kPa. When ua is small or rapidly dissipates during consolidation ua_ can be considered a constant; so let ua_=uatm m1ka : PolyLine Normalised coefficient of air volume change with respect to a change in the net normal stress (dsig-dua), PolyLine(depth, m1ka). m1kw : PolyLine Normalised coefficient of water volume change with respect to a change in the net normal stress (dsig-dua), PolyLine(depth, m1kw). m2a : PolyLine Normalised coefficient of air volume change with respect to a change in the matirx suction (duw-dua), PolyLine(depth, m2a). m2w : PolyLine Normalised coefficient of water volume change with respect to a change in the matirx suction (duw-dua), PolyLine(depth, m2w). kw : PolyLine Normalised vertical permeability PolyLine(depth, kw). Da : PolyLine Normalised coefficeint of transmission for the air phase PolyLine(depth, Da). n : PolyLine Porosity PolyLine(depth, n). Porosity must be between 0 and 1. S : PolyLine Degree of saturation, PolyLine(depth, S). Degree of saturation must be between 0 and 1. ua_ : float, optional Absolute pore air pressure, assumed constant usually at atmospheric pressure. Default ua_=101 kPa. This is used in the porosity-saturation term. surcharge_vs_depth : list of Polyline, optional Surcharge variation with depth. PolyLine(depth, multiplier). surcharge_vs_time : list of Polyline, optional Surcharge magnitude variation with time. PolyLine(time, magnitude). surcharge_omega_phase : list of 2 element tuples, optional (omega, phase) to define cyclic variation of surcharge. i.e. mag_vs_time * cos(omega*t + phase). If surcharge_omega_phase is None then cyclic component will be ignored. If surcharge_omega_phase is a list then if any member is None then cyclic component will not be applied for that load combo. atop_vs_time, wtop_vs_time : list of Polyline, optional Top air and water p.press variation with time. Polyline(time, magnitude). atop_omega_phase, wtop_omega_phase : list of 2 element tuples, optional (omega, phase) to define cyclic variation of top air and water BC. i.e. mag_vs_time * cos(omega*t + phase). If top_omega_phase is None then cyclic component will be ignored. If top_omega_phase is a list then if any member is None then cyclic component will not be applied for that load combo. abot_vs_time, wbot_vs_time : list of Polyline, optional Bottom air and water p.press variation with time. Polyline(time, magnitude). When drn=1, i.e. PTIB, bot_vs_time is equivilent to saying D[u(H,t), z] = bot_vs_time. Within the program the actual gradient will be normalised with depth by multiplying H. abot_omega_phase, wbot_omega_phase : list of 2 element tuples, optional (omega, phase) to define cyclic variation of bot air and water BC. i.e. mag_vs_time * cos(omega*t + phase). If bot_omega_phase is None then cyclic component will be ignored. If bot_omega_phase is a list then if any member is None then cyclic component will not be applied for that load combo. ppress_z : list_like of float, optional Normalised z to calculate pore pressure at. avg_ppress_z_pairs : list of two element list of float, optional Nomalised zs to calculate average pore pressure between e.g. average of all profile is [[0,1]]. settlement_z_pairs : list of two element list of float, optional Normalised depths to calculate normalised settlement between. e.g. surface settlement would be [[0, 1]]. tvals : list of float Times to calculate output at. ppress_z_tval_indexes : list/array of int, slice, optional Indexes of `tvals` at which to calculate ppress_z. i.e. only calculate ppress_z at a subset of the `tvals` values. Default ppress_z_tval_indexes=slice(None, None) i.e. use all the `tvals`. avg_ppress_z_pairs_tval_indexes : list/array of int, slice, optional Indexes of `tvals` at which to calculate avg_ppress_z_pairs. i.e. only calc avg_ppress_z_pairs at a subset of the `tvals` values. Default avg_ppress_z_pairs_tval_indexes=slice(None, None) i.e. use all the `tvals`. settlement_z_pairs_tval_indexes : list/array of int, slice, optional Indexes of `tvals` at which to calculate settlement_z_pairs. i.e. only calc settlement_z_pairs at a subset of the `tvals` values. Default settlement_z_pairs_tval_indexes=slice(None, None) i.e. use all the `tvals`. implementation : ['scalar', 'vectorized','fortran'], optional Where possible use the stated implementation type. 'scalar'= python loops (slowest), 'vectorized' = numpy (fast), 'fortran' = fortran extension (fastest). Note only some functions have multiple implementations. RLzero : float, optional Reduced level of the top of the soil layer. If RLzero is not None then all depths (in plots and results) will be transformed to an RL by RL = RLzero - z*H. If RLzero is None (i.e. the default) then all depths will be reported z*H (i.e. positive numbers). plot_properties : dict of dict, optional Dictionary that overrides some of the plot properties. Each member of `plot_properties` will correspond to one of the plots. ================== ============================================ plot_properties description ================== ============================================ porw dict of prop to pass to water pore pressure plot. pora dict of prop to pass to air pore pressure plot. avpw dict of prop to pass to average water pore pressure plot. avpa dict of prop to pass to average air pore pressure plot. set dict of prop to pass to settlement plot. seta dict of prop to pass to air settlement plot. setw dict of prop to pass to water settlement plot. load dict of prop to pass to loads plot. material dict of prop to pass to materials plot. ================== ============================================ see geotecha.plotting.one_d.plot_vs_depth and geotecha.plotting.one_d.plot_vs_time for options to specify in each plot dict. save_data_to_file : True/False, optional If True data will be saved to file. Default save_data_to_file=False save_figures_to_file : True/False If True then figures will be saved to file. Default save_figures_to_file=False show_figures : True/False, optional If True the after calculation figures will be shown on screen. Default show_figures=False. directory : string, optional Path to directory where files should be stored. Default directory=None which will use the current working directory. Note if you keep getting directory does not exist errors then try putting an r before the string definition. i.e. directory = r'C:\\Users\\...' overwrite : True/False, optional If True then existing files will be overwritten. Default overwrite=False. prefix : string, optional Filename prefix for all output files. Default prefix= 'out' create_directory : True/Fase, optional If True a new sub-folder with name based on `prefix` and an incremented number will contain the output files. Default create_directory=True. data_ext : string, optional File extension for data files. Default data_ext='.csv' input_ext : string, optional File extension for original and parsed input files. default = ".py" figure_ext : string, optional File extension for figures. Can be any valid matplotlib option for savefig. Default figure_ext=".eps". Others include 'pdf', 'png'. title : str, optional A title for the input file. This will appear at the top of data files. Default title=None, i.e. no title. author : str, optional Author of analysis. Default author='unknown'. Attributes ---------- porw, pora : ndarray, only present if ppress_z is input Calculated pore pressure at depths corresponding to `ppress_z` and times corresponding to `tvals`. This is an output array of size (len(ppress_z), len(tvals[ppress_z_tval_indexes])). porw and pora are pore pressure in water and air. avpw, avpa : ndarray, only present if avg_ppress_z_pairs is input Calculated average pore pressure between depths corresponding to `avg_ppress_z_pairs` and times corresponding to `tvals`. This is an output array of size (len(avg_ppress_z_pairs), len(tvals[avg_ppress_z_pairs_tval_indexes])). avpw and avas are average pore pressure in water and air. set, setw, seta : ndarray, only present if settlement_z_pairs is input Settlement between depths corresponding to `settlement_z_pairs` and times corresponding to `tvals`. This is an output array of size (len(avg_ppress_z_pairs), len(tvals[settlement_z_pairs_tval_indexes])). setw and sets are settlement in water and air. set is water + air. Notes ----- **Gotchas** All the loading terms e.g. surcharge_vs_time, surcharge_vs_depth, surcharge_omega_phase can be either a single value or a list of values. The corresponding lists that define a load must have the same length e.g. if specifying multiple surcharge loads then surcharge_vs_time and surcharge_vs_depth must be lists of the same length such that surcharge_vs_time[0] can be paired with surcharge_vs_depth[0], surcharge_vs_time[1] can be paired with surcharge_vs_depth[1], etc. **Material and geometric properties** - :math:`\\sigma - u_a` is net normal stress. - :math:`u_a - u_w` is matric suction. - :math:`u_a` is air pressure. - :math:`u_w` is water pressure. - :math:`m_{1k}^a` is coefficient of air volume change with respect to a change in the net normal stress. - :math:`m_{1k}^w` is coefficient of awater volume change with respect to a change in the net normal stress. - :math:`m_2^a` is coefficient of air volume change with respect to a change in the matric suction. - :math:`m_2^a` is coefficient of air volume change with respect to a change in the matric suction. - :math:`k_w` is vertical water permeability. - :math:`D_a` is coefficeint of transmission for the air phase. :math:`D_a = k_a g`. - :math:`n` is porosity :math:`0>n>1`. - :math:`S` is degree of saturation :math:`0>S>1`. - :math:`\\overline{u}_a` is the absolute air pressure. :math:`\\overline{u}_a = u_{atm}+u_a`. - :math:`u_{atm}` is absolute atmospheric air pressure. - :math:`\\gamma_w` is the unit weight of water. - :math:`Z` is the nomalised depth (:math:`Z=z/H`). - :math:`H` is the total height of the soil profile. - :math:`T` is the absolute temperature in kelvin. - :math:`\\omega` is the molecular mass of air often taken as 29e-3 kg/mol. - :math:`R` is the universal gas constant 8.314 J/(mol.K). **Governing equation** Overall strain :math:`\\varepsilon` is the sum of the air strain, :math:`\\varepsilon_a` and the water strain :math:`\\varepsilon_w`: .. math:: \\varepsilon = \\varepsilon_a + \\varepsilon_w The water and air strain components are: .. math:: \\varepsilon_a = m_{1k}^a\\left({\\sigma - u_a}\\right) + m_2^a\\left({u_a - u_w}\\right) .. math:: \\varepsilon_w = m_{1k}^w\\left({\\sigma - u_a}\\right) + m_2^w\\left({u_a - u_w}\\right) Both pore air and pore water pressures are functions of normalised depth :math:`Z` and time :math:`t`, :math:`u\\left({Z, t}\\right)`. The water and air phase partial differential equations are: .. math:: \\left({\\overline{m}_{1k}^w - \\overline{m}_2^w}\\right) u_a,_t + \\overline{m}_2^w u_w,_t + dT_w\\left({\\overline{k}_w u_w,_Z}\\right),_Z = \\overline{m}_{1k}^w \\sigma,_t .. math:: \\left({\\overline{m}_{1k}^a - \\overline{m}_2^a - \\frac{\\left({1-S}\\right)n}{\\overline{u}_a m_{\\textrm{ref}}} }\\right) u_a,_t + \\overline{m}_2^a u_w,_t + dT_a\\left({\\overline{D}_a u_a,_Z}\\right),_Z = \\overline{m}_{1k}^a \\sigma,_t where .. math:: dT_w = \\frac{k_{w\\textrm{ref}}} {H^2 m_{v\\textrm{ref}} \\gamma_w} .. math:: dT_a = \\frac{D_{a\\textrm{ref}}} {\\left({\\omega R T}\\right) \\overline{u}_a m_{\\textrm{ref}}} The overline notation represents a depth dependent property normalised by the relevant reference property. e.g. :math:`\\overline{k}_w = k_w\\left({z}\\right) / k_{w\\textrm{ref}}`. A comma followed by a subscript represents differentiation with respect to the subscripted variable e.g. :math:`u,_Z = u\\left({Z,t}\\right) / \\partial Z`. **Non-zero Boundary conditions** The following two sorts of boundary conditions for the air and water phases can be modelled independently using: .. math:: \\left.u\\left({Z,t}\\right)\\right|_{Z=0} = u^{\\textrm{top}}\\left({t}\\right) \\textrm{ and } \\left.u\\left({Z,t}\\right)\\right|_{Z=1} = u^{\\textrm{bot}}\\left({t}\\right) .. math:: \\left.u\\left({Z,t}\\right)\\right|_{Z=0} = u^{\\textrm{top}}\\left({t}\\right) \\textrm{ and } \\left.u\\left({Z,t}\\right),_Z\\right|_{Z=1} = u^{\\textrm{bot}}\\left({t}\\right) The boundary conditions are incorporated by homogenising the governing equation with the following substitution: .. math:: u\\left({Z,t}\\right) = \\hat{u}\\left({Z,t}\\right) + u_b\\left({Z,t}\\right) where for the two types of non zero boundary boundary conditions: .. math:: u_b\\left({Z,t}\\right) = u^{\\textrm{top}}\\left({t}\\right) \\left({1-Z}\\right) + u^{\\textrm{bot}}\\left({t}\\right) Z .. math:: u_b\\left({Z,t}\\right) = u^{\\textrm{top}}\\left({t}\\right) + u^{\\textrm{bot}}\\left({t}\\right) Z **Time and depth dependence of loads/material properties** Soil properties do not vary with time. Loads are formulated as the product of separate time and depth dependant functions as well as a cyclic component: .. math:: \\sigma\\left({Z,t}\\right)= \\sigma\\left({Z}\\right) \\sigma\\left({t}\\right) \\cos\\left(\\omega t + \\phi\\right) :math:`\\sigma\\left(t\\right)` is a piecewise linear function of time that within the kth loading stage is defined by the load magnitude at the start and end of the stage: .. math:: \\sigma\\left(t\\right) = \\sigma_k^{\\textrm{start}} + \\frac{\\sigma_k^{\\textrm{end}} - \\sigma_k^{\\textrm{start}}} {t_k^{\\textrm{end}} - t_k^{\\textrm{start}}} \\left(t - t_k^{\\textrm{start}}\\right) The depth dependence of loads and material property :math:`a\\left(Z\\right)` is a piecewise linear function with respect to :math:`Z`, that within a layer are defined by: .. math:: a\\left(z\\right) = a_t + \\frac{a_b - a_t}{z_b - z_t}\\left(z - z_t\\right) with :math:`t` and :math:`b` subscripts representing 'top' and 'bottom' of each layer respectively. References ---------- The genesis of this work is from research carried out by Dr. Rohan Walker, Prof. Buddhima Indraratna and others at the University of Wollongong, NSW, Austrlia, [1]_, [2]_, [3]_, [4]_. .. [1] Walker, Rohan. 2006. 'Analytical Solutions for Modeling Soft Soil Consolidation by Vertical Drains'. PhD Thesis, Wollongong, NSW, Australia: University of Wollongong. .. [2] Walker, R., and B. Indraratna. 2009. 'Consolidation Analysis of a Stratified Soil with Vertical and Horizontal Drainage Using the Spectral Method'. Geotechnique 59 (5) (January): 439-449. doi:10.1680/geot.2007.00019. .. [3] Walker, Rohan, Buddhima Indraratna, and Nagaratnam Sivakugan. 2009. 'Vertical and Radial Consolidation Analysis of Multilayered Soil Using the Spectral Method'. Journal of Geotechnical and Geoenvironmental Engineering 135 (5) (May): 657-663. doi:10.1061/(ASCE)GT.1943-5606.0000075. .. [4] Walker, Rohan T. 2011. Vertical Drain Consolidation Analysis in One, Two and Three Dimensions'. Computers and Geotechnics 38 (8) (December): 1069-1077. doi:10.1016/j.compgeo.2011.07.006. """ def _setup(self): self._attributes = ( 'H drn dT neig ' 'mvref kwref Daref ' 'dTw dTa ' 'm1ka m1kw m2a m2w kw Da ' 'surcharge_vs_depth surcharge_vs_time ' 'atop_vs_time abot_vs_time ' 'wtop_vs_time wbot_vs_time ' 'ppress_z avg_ppress_z_pairs settlement_z_pairs tvals ' 'implementation ppress_z_tval_indexes ' 'avg_ppress_z_pairs_tval_indexes settlement_z_pairs_tval_indexes ' 'surcharge_omega_phase ' 'atop_omega_phase abot_omega_phase ' 'wtop_omega_phase wbot_omega_phase ' 'RLzero ' 'prefix ' 'plot_properties ' 'ua_ n S' ).split() self._attribute_defaults = { 'H': 1.0, 'drn': 0, 'dT': 1.0, 'neig': 2, 'mvref':1.0, 'kwref': 1.0, 'Daref': 1.0, 'implementation': 'vectorized', 'ppress_z_tval_indexes': slice(None, None), 'avg_ppress_z_pairs_tval_indexes': slice(None, None), 'settlement_z_pairs_tval_indexes': slice(None, None), 'prefix': 'speccon1dunsat_', 'ua_': 101 } self._attributes_that_should_be_lists= ( 'surcharge_vs_depth surcharge_vs_time surcharge_omega_phase ' 'atop_vs_time atop_omega_phase ' 'abot_vs_time abot_omega_phase ' 'wtop_vs_time wtop_omega_phase ' 'wbot_vs_time wbot_omega_phase').split() self._attributes_that_should_have_same_x_limits = [ 'm1ka m1kw m2a m2w kw Da surcharge_vs_depth n S'.split()] self._attributes_that_should_have_same_len_pairs = [ 'surcharge_vs_depth surcharge_vs_time'.split(), 'surcharge_vs_time surcharge_omega_phase'.split(), 'atop_vs_time atop_omega_phase'.split(), 'abot_vs_time abot_omega_phase'.split(), 'wtop_vs_time wtop_omega_phase'.split(), 'wbot_vs_time wbot_omega_phase'.split(),] self._attributes_to_force_same_len = [ "surcharge_vs_time surcharge_omega_phase".split(), "atop_vs_time atop_omega_phase".split(), "abot_vs_time abot_omega_phase".split(), "wtop_vs_time wtop_omega_phase".split(), "wbot_vs_time wbot_omega_phase".split(),] self._zero_or_all = [ 'surcharge_vs_depth surcharge_vs_time'.split(), ] self._at_least_one = [ ['dTw'], ['dTa'], ['m1ka'], ['m1kw'], ['m2a'], ['m2w'], ['kw'], ['Da'], ['n'], ['S'], ('surcharge_vs_time atop_vs_time ' 'abot_vs_time wtop_vs_time wbot_vs_time').split(), ['tvals'], 'ppress_z avg_ppress_z_pairs settlement_z_pairs'.split()] self._one_implies_others = [ ('surcharge_omega_phase surcharge_vs_depth ' 'surcharge_vs_time').split(), 'atop_omega_phase atop_vs_time'.split(), 'abot_omega_phase abot_vs_time'.split(), 'wtop_omega_phase wtop_vs_time'.split(), 'wbot_omega_phase wbot_vs_time'.split(),] #these explicit initializations are just to make coding easier self.H = self._attribute_defaults.get('H', None) self.drn = self._attribute_defaults.get('drn', None) self.dT = self._attribute_defaults.get('dT', None) self.neig = self._attribute_defaults.get('neig', None) self.mvref = self._attribute_defaults.get('mvref', None) self.kwref = self._attribute_defaults.get('kwref', None) self.Daref = self._attribute_defaults.get('Daref', None) self.dTw = None self.dTa = None self.m1ka = None self.m1kw = None self.m2a = None self.m2w = None self.kw = None self.Da = None self.surcharge_vs_depth = None self.surcharge_vs_time = None self.atop_vs_time = None self.abot_vs_time = None self.wtop_vs_time = None self.wbot_vs_time = None self.ppress_z = None self.avg_ppress_z_pairs = None self.settlement_z_pairs = None self.tvals = None self.implementation = self._attribute_defaults.get('implementation', None) self.ppress_z_tval_indexes = self._attribute_defaults.get('ppress_z_tval_indexes', None) self.avg_ppress_z_pairs_tval_indexes = self._attribute_defaults.get('avg_ppress_z_pairs_tval_indexes', None) self.settlement_z_pairs_tval_indexes = self._attribute_defaults.get('settlement_z_pairs_tval_indexes', None) self.surcharge_omega_phase = None self.atop_omega_phase = None self.abot_omega_phase = None self.wtop_omega_phase = None self.wbot_omega_phase = None self.RLzero = None self.prefix = self._attribute_defaults.get('prefix', None) self.ua_ = self._attribute_defaults.get('ua_', None) self.n = None self.S = None self.plot_properties = self._attribute_defaults.get('plot_properties', None) return
[docs] def make_time_independent_arrays(self): """make all time independent arrays See Also -------- self._make_m : make the basis function eigenvalues self._make_gam : make the mv dependent gamma matrix self._make_psi : make the kv, kh, et dependent psi matrix self._make_eigs_and_v : make eigenvalues, eigenvectors and I_gamv """ self._make_m() self._make_gam() self._make_psi() self._make_eigs_and_v() return
[docs] def make_time_dependent_arrays(self): """make all time dependent arrays See Also -------- self.make_E_Igamv_the() """ self.tvals = np.asarray(self.tvals) if not self.ppress_z is None: self.ppress_z = np.asarray(self.ppress_z) self.make_E_Igamv_the() self.v_E_Igamv_the = np.dot(self.v, self.E_Igamv_the) return
[docs] def make_output(self): """make all output""" header1 = ("program: speccon1d_unsat; geotecha version: " "{}; author: {}; date: {}\n").format(self.version, self.author, time.strftime('%Y/%m/%d %H:%M:%S')) if not self.title is None: header1+= "{}\n".format(self.title) self._grid_data_dicts = [] if not self.ppress_z is None: self._make_por() z = transformations.depth_to_reduced_level( np.asarray(self.ppress_z), self.H, self.RLzero) labels = ['{:.3g}'.format(v) for v in z] d = {'name': '_data_porw', 'data': self.porw.T, 'row_labels': self.tvals[self.ppress_z_tval_indexes], 'row_labels_label': 'Time', 'column_labels': labels, 'header': header1 + 'Pore water pressure at depth'} self._grid_data_dicts.append(d) d = {'name': '_data_pora', 'data': self.pora.T, 'row_labels': self.tvals[self.ppress_z_tval_indexes], 'row_labels_label': 'Time', 'column_labels': labels, 'header': header1 + 'Pore air pressure at depth'} self._grid_data_dicts.append(d) if not self.avg_ppress_z_pairs is None: self._make_avp() z_pairs = transformations.depth_to_reduced_level( np.asarray(self.avg_ppress_z_pairs), self.H, self.RLzero) labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs] d = {'name': '_data_avpw', 'data': self.avpw.T, 'row_labels': self.tvals[self.avg_ppress_z_pairs_tval_indexes], 'row_labels_label': 'Time', 'column_labels': labels, 'header': header1 + 'Average pore water pressure between depths'} self._grid_data_dicts.append(d) d = {'name': '_data_avpa', 'data': self.avpa.T, 'row_labels': self.tvals[self.avg_ppress_z_pairs_tval_indexes], 'row_labels_label': 'Time', 'column_labels': labels, 'header': header1 + 'Average pore air pressure between depths'} self._grid_data_dicts.append(d) if not self.settlement_z_pairs is None: self._make_set() z_pairs = transformations.depth_to_reduced_level( np.asarray(self.settlement_z_pairs), self.H, self.RLzero) labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs] d = {'name': '_data_set', 'data': self.set.T, 'row_labels': self.tvals[self.settlement_z_pairs_tval_indexes], 'row_labels_label': 'Time', 'column_labels': labels, 'header': header1 + 'Settlement between depths'} self._grid_data_dicts.append(d) d = {'name': '_data_setw', 'data': self.setw.T, 'row_labels': self.tvals[self.settlement_z_pairs_tval_indexes], 'row_labels_label': 'Time', 'column_labels': labels, 'header': header1 + 'Water settlement between depths'} self._grid_data_dicts.append(d) d = {'name': '_data_seta', 'data': self.seta.T, 'row_labels': self.tvals[self.settlement_z_pairs_tval_indexes], 'row_labels_label': 'Time', 'column_labels': labels, 'header': header1 + 'Air settlement between depths'} self._grid_data_dicts.append(d) return
def _make_m(self): """make the basis function eigenvalues m in u = sin(m * Z) Notes ----- .. math:: m_i =\\pi*\\left(i+1-drn/2\\right) for :math:`i = 1\:to\:neig-1` """ if sum(v is None for v in[self.neig, self.drn])!=0: raise ValueError('neig and/or drn is not defined') self.m = integ.m_from_sin_mx(np.arange(self.neig), self.drn) self.m_block = np.empty(2 * self.neig, dtype=float) self.m_block[:self.neig] = self.m self.m_block[self.neig:] = self.m return def _make_gam(self): """make the mv dependant gam matrix """ # self.gam = integ.pdim1sin_af_linear( # self.m, self.mv, implementation=self.implementation) gam_1kw = integ.pdim1sin_af_linear( self.m, self.m1kw, implementation=self.implementation) gam_1ka = integ.pdim1sin_af_linear( self.m, self.m1ka, implementation=self.implementation) gam_2w = integ.pdim1sin_af_linear( self.m, self.m2w, implementation=self.implementation) gam_2a = integ.pdim1sin_af_linear( self.m, self.m2a, implementation=self.implementation) gam_n = integ.pdim1sin_af_linear( self.m, self.n, implementation=self.implementation) gam_n/= self.ua_ * self.mvref gam_sn = integ.pdim1sin_abf_linear( self.m, self.n, self.S, implementation=self.implementation) gam_sn/= self.ua_ * self.mvref self.gam = np.zeros((2 * self.neig, 2 * self.neig)) self.gam[:self.neig, :self.neig] = gam_2w self.gam[:self.neig, self.neig:] = (gam_1kw - gam_2w) self.gam[self.neig:, :self.neig] = gam_2a self.gam[self.neig:, self.neig:] = (gam_1ka - gam_2a - gam_n + gam_sn) self.gam[np.abs(self.gam)<1e-8] = 0.0 return def _make_psi(self): """make all the kv, kh, kvc, khc, et dependant psi matrices """ psi_wv = (self.dTw / self.dT * integ.pdim1sin_D_aDf_linear(self.m, self.kw, implementation=self.implementation)) psi_av = (self.dTa / self.dT * integ.pdim1sin_D_aDf_linear(self.m, self.Da, implementation=self.implementation)) self.psi = np.zeros((2 * self.neig, 2 * self.neig)) self.psi [:self.neig, :self.neig] = psi_wv self.psi [self.neig:, self.neig:] = psi_av # self.psi[np.abs(self.psi)<1e-8] = 0.0 return def _make_eigs_and_v(self): """make Igam_psi, v and eigs, and Igamv Finds the eigenvalues, `self.eigs`, and eigenvectors, `self.v` of inverse(gam)*psi. Once found the matrix inverse(gamma*v), `self.Igamv` is determined. Notes ----- From the original equation .. math:: \\mathbf{\\Gamma}\\mathbf{A}'=\\mathbf{\\Psi A}+loading\\:terms `self.eigs` and `self.v` are the eigenvalues and eigenvegtors of the matrix `self.Igam_psi` .. math:: \\left(\\mathbf{\\Gamma}^{-1}\\mathbf{\\Psi}\\right) """ # self.psi[np.abs(self.psi) < 1e-8] = 0.0 Igam_psi = np.dot(np.linalg.inv(self.gam), self.psi) self.eigs, self.v = np.linalg.eig(Igam_psi) self.v = np.asarray(self.v) self.Igamv = np.linalg.inv(np.dot(self.gam, self.v))
[docs] def print_eigs(self): """print eigenvalues to stdout""" print('eigs') for i, x in enumerate(self.eigs): if i<self.neig: print('water {0}, {1:3.3f}'.format(i, x)) else: print('air {0}, {1:3.3f}'.format(i-self.neig, x)) return
[docs] def make_E_Igamv_the(self): """sum contributions from all loads Calculates all contributions to E*inverse(gam*v)*theta part of solution u=phi*vE*inverse(gam*v)*theta. i.e. surcharge, vacuum, top and bottom pore pressure boundary conditions. `make_load_matrices will create `self.E_Igamv_the`. `self.E_Igamv_the` is an array of size (neig, len(tvals)). So the columns are the column array E*inverse(gam*v)*theta calculated at each output time. This will allow us later to do u = phi*v*self.E_Igamv_the See Also -------- _make_E_Igamv_the_surcharge : surchage contribution _make_E_Igamv_the_BC : top boundary pore pressure contribution _make_E_Igamv_the_bot : bottom boundary pore pressure contribution """ self.E_Igamv_the = np.zeros((2*self.neig, len(self.tvals))) if sum([v is None for v in [self.surcharge_vs_depth, self.surcharge_vs_time]])==0: self._make_E_Igamv_the_surcharge() self.E_Igamv_the += self.E_Igamv_the_surcharge if sum(v is None for v in[self.atop_vs_time, self.abot_vs_time, self.wtop_vs_time, self.wbot_vs_time])!=0: self._make_E_Igamv_the_BC() self.E_Igamv_the += self.E_Igamv_the_BC return
def _make_E_Igamv_the_surcharge(self): """make the surcharge loading matrices Make the E*inverse(gam*v)*theta part of solution u=phi*vE*inverse(gam*v)*theta. The contribution of each surcharge load is added and put in `self.E_Igamv_the_surcharge`. `self.E_Igamv_the_surcharge` is an array of size (neig, len(tvals)). So the columns are the column array E*inverse(gam*v)*theta calculated at each output time. This will allow us later to do u = phi*v*self.E_Igamv_the_surcharge Notes ----- Assuming the load are formulated as the product of separate time and depth dependant functions: .. math:: \\sigma\\left({Z,t}\\right)=\\sigma\\left({Z}\\right)\\sigma\\left({t}\\right) the solution to the consolidation equation using the spectral method has the form: .. math:: u\\left(Z,t\\right)=\\mathbf{\\Phi v E}\\left(\\mathbf{\\Gamma v}\\right)^{-1}\\mathbf{\\theta} `_make_E_Igamv_the_surcharge` will create `self.E_Igamv_the_surcharge` which is the :math:`\\mathbf{E}\\left(\\mathbf{\\Gamma v}\\right)^{-1}\\mathbf{\\theta}` part of the solution for all surcharge loads """ self.E_Igamv_the_surcharge = ( speccon1d.dim1sin_E_Igamv_the_aDmagDt_bilinear(self.m_block, self.eigs, self.tvals, self.Igamv, self.m1kw, self.surcharge_vs_depth, self.surcharge_vs_time, self.surcharge_omega_phase, self.dT, theta_zero_indexes=slice(self.neig, None), implementation=self.implementation)) self.E_Igamv_the_surcharge += ( speccon1d.dim1sin_E_Igamv_the_aDmagDt_bilinear(self.m_block, self.eigs, self.tvals, self.Igamv, self.m1ka, self.surcharge_vs_depth, self.surcharge_vs_time, self.surcharge_omega_phase, self.dT, theta_zero_indexes=slice(None, self.neig), implementation=self.implementation)) return def _normalised_bot_vs_time(self): """Normalise bot_vs_time when drn=1, i.e. bot_vs_time is a gradient Multiplie each bot_vs_time PolyLine by self.H Returns ------- bot_vs_time : list of Polylines, or None bot_vs_time normalised by H """ if not self.wbot_vs_time is None: if self.drn == 1: wbot_vs_time = ([vs_time * self.H for vs_time in self.wbot_vs_time]) else: wbot_vs_time = self.wbot_vs_time else: wbot_vs_time = None if not self.abot_vs_time is None: if self.drn == 1: abot_vs_time = ([vs_time * self.H for vs_time in self.abot_vs_time]) else: abot_vs_time = self.abot_vs_time else: abot_vs_time = None return wbot_vs_time, abot_vs_time def _make_E_Igamv_the_BC(self): """make the boundary condition loading matrices """ self.E_Igamv_the_BC = np.zeros((2*self.neig, len(self.tvals))) wbot_vs_time, abot_vs_time = self._normalised_bot_vs_time() botzero=slice(self.neig, None) topzero=slice(None, self.neig) # top row of block #m2w * duw/dt component self.E_Igamv_the_BC -= ( speccon1d.dim1sin_E_Igamv_the_BC_aDfDt_linear( self.drn, self.m_block, self.eigs, self.tvals, self.Igamv, self.m2w, self.wtop_vs_time, wbot_vs_time, self.wtop_omega_phase, self.wbot_omega_phase, self.dT, theta_zero_indexes=botzero, implementation=self.implementation)) #m1kw * dua/dt component self.E_Igamv_the_BC -= ( speccon1d.dim1sin_E_Igamv_the_BC_aDfDt_linear( self.drn, self.m_block, self.eigs, self.tvals, self.Igamv, self.m1kw, self.atop_vs_time, abot_vs_time, self.atop_omega_phase, self.abot_omega_phase, self.dT, theta_zero_indexes=botzero, implementation=self.implementation)) #m2w * dua/dt component self.E_Igamv_the_BC += ( speccon1d.dim1sin_E_Igamv_the_BC_aDfDt_linear( self.drn, self.m_block, self.eigs, self.tvals, self.Igamv, self.m2w, self.atop_vs_time, abot_vs_time, self.atop_omega_phase, self.abot_omega_phase, self.dT, theta_zero_indexes=botzero, implementation=self.implementation)) # #(m1kw * dua/dt - m2w * dua/dt) component # self.E_Igamv_the_BC -= ( # speccon1d.dim1sin_E_Igamv_the_BC_aDfDt_linear( # self.drn, self.m_block, self.eigs, self.tvals, # self.Igamv, self.m1kw-self.m2w, # self.atop_vs_time, abot_vs_time, # self.atop_omega_phase, self.abot_omega_phase, # self.dT,theta_zero_indexes=botzero, # implementation=self.implementation)) #dTw * d/dZ(kw * duw/dZ) component if self.dTw!=0: self.E_Igamv_the_BC -= (self.dTw * speccon1d.dim1sin_E_Igamv_the_BC_D_aDf_linear(self.drn, self.m_block, self.eigs, self.tvals, self.Igamv, self.kw, self.wtop_vs_time, wbot_vs_time, self.wtop_omega_phase, self.wbot_omega_phase, self.dT, theta_zero_indexes=botzero, implementation=self.implementation)) # bottom row of block #m2a * duw/dt component self.E_Igamv_the_BC -= ( speccon1d.dim1sin_E_Igamv_the_BC_aDfDt_linear( self.drn, self.m_block, self.eigs, self.tvals, self.Igamv, self.m2a, self.wtop_vs_time, wbot_vs_time, self.wtop_omega_phase, self.wbot_omega_phase, self.dT, theta_zero_indexes=topzero, implementation=self.implementation)) #m1ka * dua/dt component self.E_Igamv_the_BC -= ( speccon1d.dim1sin_E_Igamv_the_BC_aDfDt_linear( self.drn, self.m_block, self.eigs, self.tvals, self.Igamv, self.m1ka, self.atop_vs_time, abot_vs_time, self.atop_omega_phase, self.abot_omega_phase, self.dT, theta_zero_indexes=topzero, implementation=self.implementation)) #m2a * dua/dt component self.E_Igamv_the_BC += ( speccon1d.dim1sin_E_Igamv_the_BC_aDfDt_linear( self.drn, self.m_block, self.eigs, self.tvals, self.Igamv, self.m2a, self.atop_vs_time, abot_vs_time, self.atop_omega_phase, self.abot_omega_phase, self.dT, theta_zero_indexes=topzero, implementation=self.implementation)) #n * dua/dt / mvref/ ua_ component self.E_Igamv_the_BC += ( speccon1d.dim1sin_E_Igamv_the_BC_aDfDt_linear( self.drn, self.m_block, self.eigs, self.tvals, self.Igamv, self.n, self.atop_vs_time, abot_vs_time, self.atop_omega_phase, self.abot_omega_phase, self.dT, theta_zero_indexes=topzero, implementation=self.implementation))/ (self.mvref * self.ua_) # #(m1ka * dua/dt - m2a * dua/dt - n * dua/dt / mvref/ ua_) component # self.E_Igamv_the_BC -= ( # speccon1d.dim1sin_E_Igamv_the_BC_aDfDt_linear( # self.drn, self.m_block, self.eigs, self.tvals, # self.Igamv, self.m1ka - self.m2a - self.n/self.mvref/self.ua_, # self.atop_vs_time, abot_vs_time, # self.atop_omega_phase, self.abot_omega_phase, # self.dT, theta_zero_indexes=topzero, # implementation=self.implementation)) #S*n * dua/dt component self.E_Igamv_the_BC -= ( speccon1d.dim1sin_E_Igamv_the_BC_abDfDt_linear( self.drn, self.m_block, self.eigs, self.tvals, self.Igamv, self.S, self.n, self.atop_vs_time, abot_vs_time, self.atop_omega_phase, self.abot_omega_phase, self.dT, theta_zero_indexes=topzero, implementation=self.implementation))/ (self.mvref * self.ua_) #dTa * d/dZ(Da * du/dZ) component if self.dTw!=0: self.E_Igamv_the_BC -= (self.dTa * speccon1d.dim1sin_E_Igamv_the_BC_D_aDf_linear(self.drn, self.m_block, self.eigs, self.tvals, self.Igamv, self.Da, self.atop_vs_time, abot_vs_time, self.atop_omega_phase, self.abot_omega_phase, self.dT, theta_zero_indexes=topzero, implementation=self.implementation)) return def _make_por(self): """make the pore pressure output, ua and uw makes `self.por`, the average pore pressure at depths corresponding to self.ppress_z and times corresponding to self.tvals. `self.por` has size (len(ppress_z), len(tvals)). Notes ----- Solution to consolidation equation with spectral method for pore pressure at depth is : .. math:: u\\left(Z,t\\right)=\\mathbf{\\Phi v E}\\left(\\mathbf{\\Gamma v}\\right)^{-1}\\mathbf{\\theta}+u_{top}\\left({t}\\right)\\left({1-Z}\\right)+u_{bot}\\left({t}\\right)\\left({Z}\\right) For pore pressure :math:`\\Phi` is simply :math:`sin\\left({mZ}\\right)` for each value of m """ wbot_vs_time, abot_vs_time = self._normalised_bot_vs_time() tvals = self.tvals[self.ppress_z_tval_indexes] #water pore pressure at depth self.porw = speccon1d.dim1sin_f(self.m, self.ppress_z, tvals, self.v_E_Igamv_the[:self.neig, self.ppress_z_tval_indexes], self.drn, self.wtop_vs_time, wbot_vs_time, self.wtop_omega_phase, self.wbot_omega_phase) #air pore pressure at depth self.pora = speccon1d.dim1sin_f(self.m, self.ppress_z, tvals, self.v_E_Igamv_the[self.neig:, self.ppress_z_tval_indexes], self.drn, self.atop_vs_time, abot_vs_time, self.atop_omega_phase, self.abot_omega_phase) return def _make_avp(self): """calculate average pore pressure, for us uc and u makes `self.avp`, the average pore pressure at depths corresponding to self.avg_ppress_z_pairs and times corresponding to self.tvals. `self.avp` has size (len(ppress_z), len(tvals)). Notes ----- The average pore pressure between Z1 and Z2 is given by: .. math:: \\overline{u}\\left(\\left({Z_1,Z_2}\\right),t\\right)=\\int_{Z_1}^{Z_2}{\\mathbf{\\Phi v E}\\left(\\mathbf{\\Gamma v}\\right)^{-1}\\mathbf{\\theta}+u_{top}\\left({t}\\right)\\left({1-Z}\\right)+u_{bot}\\left({t}\\right)\\left({Z}\\right)\,dZ}/\\left({Z_2-Z_1}\\right) """ wbot_vs_time, abot_vs_time = self._normalised_bot_vs_time() tvals = self.tvals[self.avg_ppress_z_pairs_tval_indexes] #water pore pressure at depth self.avpw = speccon1d.dim1sin_avgf(self.m, self.avg_ppress_z_pairs, tvals, self.v_E_Igamv_the[:self.neig, self.avg_ppress_z_pairs_tval_indexes], self.drn, self.wtop_vs_time, wbot_vs_time, self.wtop_omega_phase, self.wbot_omega_phase) #air pore pressure at depth self.avpa = speccon1d.dim1sin_avgf(self.m, self.avg_ppress_z_pairs, tvals, self.v_E_Igamv_the[self.neig:, self.avg_ppress_z_pairs_tval_indexes], self.drn, self.atop_vs_time, abot_vs_time, self.atop_omega_phase, self.abot_omega_phase) return def _make_set(self): """calculate settlement makes `self.set`, the average pore pressure at depths corresponding to self.settlement_z_pairs and times corresponding to self.tvals. `self.set` has size (len(ppress_z), len(tvals)). Notes ----- The average settlement between Z1 and Z2 is given by: .. math:: \\overline{\\rho}\\left(\\left({Z_1,Z_2}\\right),t\\right)=\\int_{Z_1}^{Z_2}{m_v\\left({Z}\\right)\\left({\\sigma\\left({Z,t}\\right)-u\\left({Z,t}\\right)}\\right)\\,dZ} .. math:: \\overline{\\rho}\\left(\\left({Z_1,Z_2}\\right),t\\right)=\\int_{Z_1}^{Z_2}{m_v\\left({Z}\\right)\\sigma\\left({Z,t}\\right)\\,dZ}+\\int_{Z_1}^{Z_2}{m_v\\left({Z}\\right)\\left({\\mathbf{\\Phi v E}\\left(\\mathbf{\\Gamma v}\\right)^{-1}\\mathbf{\\theta}+u_{top}\\left({t}\\right)\\left({1-Z}\\right)+u_{bot}\\left({t}\\right)\\left({Z}\\right)}\\right)\\,dZ} """ wbot_vs_time, abot_vs_time = self._normalised_bot_vs_time() z1 = np.asarray(self.settlement_z_pairs)[:,0] z2 = np.asarray(self.settlement_z_pairs)[:,1] # setw ua part self.setw = speccon1d.dim1sin_integrate_af(self.m, self.settlement_z_pairs, self.tvals[self.settlement_z_pairs_tval_indexes], self.v_E_Igamv_the[self.neig: ,self.settlement_z_pairs_tval_indexes], self.drn, self.m2w - self.m1kw, self.atop_vs_time, abot_vs_time, self.atop_omega_phase, self.abot_omega_phase) # setw uw part self.setw -= speccon1d.dim1sin_integrate_af(self.m, self.settlement_z_pairs, self.tvals[self.settlement_z_pairs_tval_indexes], self.v_E_Igamv_the[:self.neig ,self.settlement_z_pairs_tval_indexes], self.drn, self.m2w, self.wtop_vs_time, wbot_vs_time, self.wtop_omega_phase, self.wbot_omega_phase) # seta ua part self.seta = speccon1d.dim1sin_integrate_af(self.m, self.settlement_z_pairs, self.tvals[self.settlement_z_pairs_tval_indexes], self.v_E_Igamv_the[self.neig: ,self.settlement_z_pairs_tval_indexes], self.drn, self.m2a - self.m1ka, self.atop_vs_time, abot_vs_time, self.atop_omega_phase, self.abot_omega_phase) # seta uw part self.setw -= speccon1d.dim1sin_integrate_af(self.m, self.settlement_z_pairs, self.tvals[self.settlement_z_pairs_tval_indexes], self.v_E_Igamv_the[:self.neig ,self.settlement_z_pairs_tval_indexes], self.drn, self.m2a, self.wtop_vs_time, wbot_vs_time, self.wtop_omega_phase, self.wbot_omega_phase) if not self.surcharge_vs_time is None: #setw surcharge part self.setw += ( pwise.pxa_ya_cos_multiply_integrate_x1b_x2b_y1b_y2b_multiply_x1c_x2c_y1c_y2c_between_super( self.surcharge_vs_time, self.surcharge_vs_depth, self.m1kw, self.tvals[self.settlement_z_pairs_tval_indexes], z1, z2, omega_phase = self.surcharge_omega_phase, achoose_max=True)) #seta surcharge part self.seta += ( pwise.pxa_ya_cos_multiply_integrate_x1b_x2b_y1b_y2b_multiply_x1c_x2c_y1c_y2c_between_super( self.surcharge_vs_time, self.surcharge_vs_depth, self.m1ka, self.tvals[self.settlement_z_pairs_tval_indexes], z1, z2, omega_phase = self.surcharge_omega_phase, achoose_max=True)) self.setw *= self.H * self.mvref self.seta *= self.H * self.mvref self.set = self.seta + self.setw return def _plot_porw(self): """plot depth vs pore water pressure for various times """ t = self.tvals[self.ppress_z_tval_indexes] line_labels = ['{:.3g}'.format(v) for v in t] porw_prop = self.plot_properties.pop('porw', dict()) if not 'xlabel' in porw_prop: porw_prop['xlabel'] = 'Pore water pressure' #to do fig_porw = geotecha.plotting.one_d.plot_vs_depth(self.porw, self.ppress_z, line_labels=line_labels, H = self.H, RLzero=self.RLzero, prop_dict=porw_prop) return fig_porw def _plot_pora(self): """plot depth vs pore air pressure for various times """ t = self.tvals[self.ppress_z_tval_indexes] line_labels = ['{:.3g}'.format(v) for v in t] pora_prop = self.plot_properties.pop('pora', dict()) if not 'xlabel' in pora_prop: pora_prop['xlabel'] = 'Pore air pressure' #to do fig_pora = geotecha.plotting.one_d.plot_vs_depth(self.pora, self.ppress_z, line_labels=line_labels, H = self.H, RLzero=self.RLzero, prop_dict=pora_prop) return fig_pora def _plot_avpw(self): """plot average pore water pressure vs time for various depth intervals """ t = self.tvals[self.avg_ppress_z_pairs_tval_indexes] z_pairs = transformations.depth_to_reduced_level( np.asarray(self.avg_ppress_z_pairs), self.H, self.RLzero) line_labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs] avpw_prop = self.plot_properties.pop('avpw', dict()) if not 'ylabel' in avpw_prop: avpw_prop['ylabel'] = 'Average pore water pressure' fig_avpw = geotecha.plotting.one_d.plot_vs_time(t, self.avpw.T, line_labels=line_labels, prop_dict=avpw_prop) fig_avpw.gca().set_xscale('log') return fig_avpw def _plot_avpa(self): """plot average pore air pressure vs time for various depth intervals """ t = self.tvals[self.avg_ppress_z_pairs_tval_indexes] z_pairs = transformations.depth_to_reduced_level( np.asarray(self.avg_ppress_z_pairs), self.H, self.RLzero) line_labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs] avpa_prop = self.plot_properties.pop('avpa', dict()) if not 'ylabel' in avpa_prop: avpa_prop['ylabel'] = 'Average pore air pressure' fig_avpa = geotecha.plotting.one_d.plot_vs_time(t, self.avpa.T, line_labels=line_labels, prop_dict=avpa_prop) fig_avpa.gca().set_xscale('log') return fig_avpa def _plot_set(self): """plot settlement vs time for various depth intervals """ t = self.tvals[self.settlement_z_pairs_tval_indexes] z_pairs = transformations.depth_to_reduced_level( np.asarray(self.settlement_z_pairs), self.H, self.RLzero) line_labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs] set_prop = self.plot_properties.pop('set', dict()) if not 'ylabel' in set_prop: set_prop['ylabel'] = 'Settlement' fig_set = geotecha.plotting.one_d.plot_vs_time(t, self.set.T, line_labels=line_labels, prop_dict=set_prop) # fig_set.gca().invert_yaxis() fig_set.gca().set_xscale('log') return fig_set def _plot_setw(self): """plot water settlement vs time for various depth intervals """ t = self.tvals[self.settlement_z_pairs_tval_indexes] z_pairs = transformations.depth_to_reduced_level( np.asarray(self.settlement_z_pairs), self.H, self.RLzero) line_labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs] set_prop = self.plot_properties.pop('setw', dict()) if not 'ylabel' in set_prop: set_prop['ylabel'] = 'Water settlement' fig_set = geotecha.plotting.one_d.plot_vs_time(t, self.setw.T, line_labels=line_labels, prop_dict=set_prop) # fig_set.gca().invert_yaxis() fig_set.gca().set_xscale('log') return fig_set def _plot_seta(self): """plot air settlement vs time for various depth intervals """ t = self.tvals[self.settlement_z_pairs_tval_indexes] z_pairs = transformations.depth_to_reduced_level( np.asarray(self.settlement_z_pairs), self.H, self.RLzero) line_labels = ['{:.3g} to {:.3g}'.format(z1, z2) for z1, z2 in z_pairs] set_prop = self.plot_properties.pop('seta', dict()) if not 'ylabel' in set_prop: set_prop['ylabel'] = 'Air settlement' fig_set = geotecha.plotting.one_d.plot_vs_time(t, self.seta.T, line_labels=line_labels, prop_dict=set_prop) # fig_set.gca().invert_yaxis() fig_set.gca().set_xscale('log') return fig_set
[docs] def produce_plots(self): """produce plots of analysis""" geotecha.plotting.one_d.pleasing_defaults() # matplotlib.rcParams['figure.dpi'] = 80 # matplotlib.rcParams['savefig.dpi'] = 80 matplotlib.rcParams.update({'font.size': 11}) matplotlib.rcParams.update({'font.family': 'serif'}) self._figures=[] #por and porwell if not self.ppress_z is None: f=self._plot_porw() title = 'fig_porw' f.set_label(title) f.canvas.manager.set_window_title(title) self._figures.append(f) f=self._plot_pora() title = 'fig_pora' f.set_label(title) f.canvas.manager.set_window_title(title) self._figures.append(f) if not self.avg_ppress_z_pairs is None: f=self._plot_avpw() title = 'fig_avpw' f.set_label(title) f.canvas.manager.set_window_title(title) self._figures.append(f) f=self._plot_avpa() title = 'fig_avpa' f.set_label(title) f.canvas.manager.set_window_title(title) self._figures.append(f) #settle if not self.settlement_z_pairs is None: f=self._plot_set() title = 'fig_set' f.set_label(title) f.canvas.manager.set_window_title(title) self._figures.append(f) f=self._plot_setw() title = 'fig_setw' f.set_label(title) f.canvas.manager.set_window_title(title) self._figures.append(f) f=self._plot_seta() title = 'fig_seta' f.set_label(title) f.canvas.manager.set_window_title(title) self._figures.append(f) #loads f=self._plot_loads() title = 'fig_loads' f.set_label(title) f.canvas.manager.set_window_title(title) self._figures.append(f) #materials f=self._plot_materials() self._figures.append(f) title = 'fig_materials' f.set_label(title) f.canvas.manager.set_window_title(title)
def _plot_materials(self): material_prop = self.plot_properties.pop('material', dict()) z_x=[] xlabels=[] z_x.append(self.m1kw) xlabels.append('$m_{{1k}}^w/\\overline{{m}}_v$, $\\left' '(\\overline{{m}}_v={:g}\\right)$'.format(self.mvref)) z_x.append(self.m2w) xlabels.append('$m_{{2}}^w/\\overline{{m}}_v$, $\\left' '(\\overline{{m}}_v={:g}\\right)$'.format(self.mvref)) z_x.append(self.m1ka) xlabels.append('$m_{{1k}}^a/\\overline{{m}}_v$, $\\left' '(\\overline{{m}}_v={:g}\\right)$'.format(self.mvref)) z_x.append(self.m2a) xlabels.append('$m_{{2}}^a/\\overline{{m}}_v$, $\\left' '(\\overline{{m}}_v={:g}\\right)$'.format(self.mvref)) z_x.append(self.kw) xlabels.append('$k_w/\\overline{{k}}_w$, $\\left' '(\\overline{{k}}_w={:g}\\right)$'.format(self.kwref)) z_x.append(self.Da) xlabels.append('$D_a^\\ast/\\overline{{D}}_a^\\ast$, $\\left' '(\\overline{{k}}_w={:g}\\right)$'.format(self.Daref)) z_x.append(self.S) xlabels.append('Saturation, $S_r$') z_x.append(self.n) xlabels.append('Porosity, $n$') return (geotecha.plotting.one_d.plot_single_material_vs_depth(z_x, xlabels, H = self.H, RLzero = self.RLzero,prop_dict = material_prop)) def _plot_loads(self): """plot loads """ load_prop = self.plot_properties.pop('load', dict()) load_triples=[] load_names = [] ylabels=[] #surcharge if not self.surcharge_vs_time is None: load_names.append('surch') ylabels.append('Surcharge') load_triples.append( [(vs_time, vs_depth, omega_phase) for vs_time, vs_depth, omega_phase in zip(self.surcharge_vs_time, self.surcharge_vs_depth, self.surcharge_omega_phase)]) if not self.wtop_vs_time is None: load_names.append('wtop') ylabels.append('Top water boundary') load_triples.append( [(vs_time, ([0],[1]), omega_phase) for vs_time, omega_phase in zip(self.wtop_vs_time, self.wtop_omega_phase)]) if not self.wbot_vs_time is None: #TODO: maybe if drn = 1, multiply bot_vs_time by H to give actual # gradient rather than normalised. load_names.append('wbot') ylabels.append('Bot water boundary') load_triples.append( [(vs_time, ([1],[1]), omega_phase) for vs_time, omega_phase in zip(self.wbot_vs_time, self.wbot_omega_phase)]) if not self.atop_vs_time is None: load_names.append('atop') ylabels.append('Top air boundary') load_triples.append( [(vs_time, ([0],[1]), omega_phase) for vs_time, omega_phase in zip(self.atop_vs_time, self.atop_omega_phase)]) if not self.abot_vs_time is None: #TODO: maybe if drn = 1, multiply bot_vs_time by H to give actual # gradient rather than normalised. load_names.append('abot') ylabels.append('Bot air boundary') load_triples.append( [(vs_time, ([1],[1]), omega_phase) for vs_time, omega_phase in zip(self.abot_vs_time, self.abot_omega_phase)]) return (geotecha.plotting.one_d.plot_generic_loads(load_triples, load_names, ylabels=ylabels, H = self.H, RLzero=self.RLzero, prop_dict=load_prop))
[docs]def main(): """Run speccon1d_unsat as scipt""" a = GenericInputFileArgParser(obj=Speccon1dUnsat, methods=[('make_all', [], {})], pass_open_file=True) a.main()
if __name__ == '__main__': import nose nose.runmodule(argv=['nose', '--verbosity=3', '--with-doctest']) # nose.runmodule(argv=['nose', '--verbosity=3']) main()