Source code for geotecha.mathematics.mp_laplace

# geotecha - A software suite for geotechncial engineering
# Copyright (C) 2018  Rohan T. Walker (rtrwalker@gmail.com)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see http://www.gnu.org/licenses/gpl.html.

"""this module implements numerical inverse laplace transform using mpmath"""

from __future__ import print_function, division

import numpy as np

try:
    import mpmath
except ImportError:
    try:
        import sympy.mpmath as mpmath
    except ImportError:
        raise ImportError("No mpmath module can be found."
                          "Checked mpmath and sympy.mpmath")

tan = np.frompyfunc(mpmath.tan, 1, 1)
sin = np.frompyfunc(mpmath.sin, 1, 1)
exp = np.frompyfunc(mpmath.exp, 1, 1)

[docs]class Talbot(object): """Numerical inverse Laplace transform using mpmath for high precision Parameters ---------- f : function or method Function to perform inverse Laplace transform on. Function should be vectorised. n : even int, optional Number of integration points. if n is even it will be rounded up to nearest even number Default n=24. shift : float Shift contour to the right in case there is a pole on the positive real axis. Default shift=0.0. dps : int, optional mpmath.mp.dps. Default dps=None i.e. use what exists usually 15. note that this changes the global dps value Notes ----- Talbot suggested that the Bromwich line be deformed into a contour that begins and ends in the left half plane, i.e., z infinity at both ends. Due to the exponential factor the integrand decays rapidly on such a contour. In such situations the trapezoidal rule converge extraordinarily rapidly. Shift contour to the right in case there is a pole on the positive real axis : Note the contour will not be optimal since it was originally devoloped for function with singularities on the negative real axis For example take F(s) = 1/(s-1), it has a pole at s = 1, the contour needs to be shifted with one unit, i.e shift = 1. References ---------- Code adapted (vectorised, args added) from [1]_ and [2]_ (including much of the text taken verbatim). Algorithm from [3]_: .. [1] Created by Fernando Damian Nieuwveldt, 25 October 2009, fdnieuwveldt@gmail.com, http://code.activestate.com/recipes/576934-numerical-inversion-of-the-laplace-transform-using/ .. [2] Adapted to mpmath and classes by Dieter Kadelka, 27 October 2009, Dieter.Kadelka@kit.edu, http://code.activestate.com/recipes/578799-numerical-inversion-of-the-laplace-transform-with-/ .. [3] L.N.Trefethen, J.A.C.Weideman, and T.Schmelzer. Talbot quadratures and rational approximations. BIT. Numerical Mathematics, 46(3):653 670, 2006. See Also -------- geotecha.mathematics.laplace.Talbot : numerical inverse laplace without mpmath; less precision (though still adequate) but faster. """ def __init__(self, f, n=24, shift=0.0, dps = None): self.f = f self.n = n + n % 2 self.shift = shift if not dps is None: mpmath.mp.dps=dps @property def dps(self): """Get the dps property.""" return mpmath.mp.dps def __call__(self, t, args=()): """Numerical inverse laplace transform of F at various time t. Parameters ---------- t : single value or np.array of float Time values to evaluate inverse Laplace at. args : tuple, optional Additional arguments to pass to F. Default args=(). Returns ------- inv_laplace : mpmath.mpf or np.array of mpmath.mpf Numerical inverse laplace transform at time t """ t = np.atleast_1d(t)[np.newaxis, :] if np.any(t==0): raise ValueError('Inverse transform can not be calculated for t=0') # Initiate the stepsize h = 2*mpmath.pi/self.n; c1 = mpmath.mpf('0.5017') c2 = mpmath.mpf('0.6407') c3 = mpmath.mpf('0.6122') c4 = mpmath.mpc('0','0.2645') half = mpmath.mpc('0.5') one = mpmath.mpc('1.0') theta = (-mpmath.pi + (np.arange(self.n)*one + half)*h)[:, np.newaxis] z = self.shift + self.n/t*(c1*theta/tan(c2*theta) - c3 + c4*theta) dz = self.n/t * (-c1*c2*theta/sin(c2*theta)**2 + c1/tan(c2*theta)+c4) inv_laplace = (exp(z * t) * self.f(z, *args) * dz).sum(axis=0) inv_laplace *= h / (2j * mpmath.pi) if len(inv_laplace)==1: return inv_laplace[0].real else: return np.array([getattr(v, 'real') for v in inv_laplace])
if __name__ == '__main__': import nose nose.runmodule(argv=['nose', '--verbosity=3', '--with-doctest']) # nose.runmodule(argv=['nose', '--verbosity=3'])