Source code for geotecha.mathematics.laplace

# geotecha - A software suite for geotechncial engineering
# Copyright (C) 2018  Rohan T. Walker (rtrwalker@gmail.com)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see http://www.gnu.org/licenses/gpl.html.

"""Numerical inverse Laplace transform"""


from __future__ import print_function, division

import numpy as np

[docs]def cot(phi): """Reciprocal of tan function. Parameters ---------- phi : float of 1d array of float Point to evaluate at. Returns ------- out : float or 1d array of float cot(phi) """ return 1/np.tan(phi)
[docs]def csc(phi): """Reciprocal of sin function. Parameters ---------- phi : float of 1d array of float Point to evaluate at. Returns ------- out : float or 1d array of float csc(phi) """ return 1.0/np.sin(phi)
[docs]class Talbot(object): """Numerical inverse Laplace transform, Talbot method Parameters ---------- f : function or method Function to perform inverse Laplace transform on. Function should be vectorised (but doesn't have to be). n : even int, optional Number of integration points. Nf n is even it will be rounded up to nearest even number. Default n=24. shift : float, optional Shift contour to the right in case there is a pole on the positive real axis. Default shift=0.0. vectorized : True/False, optional If True then `f` accepts vector inputs and numpy broadcasting will be used. Otherwise function evaluation will occur in loops. Default vectorized=True. Notes ----- Talbot suggested that the Bromwich line be deformed into a contour that begins and ends in the left half plane, i.e., z infinity at both ends. Due to the exponential factor the integrand decays rapidly on such a contour. In such situations the trapezoidal rule converge extraordinarily rapidly. Shift contour to the right in case there is a pole on the positive real axis : Note the contour will not be optimal since it was originally devoloped for function with singularities on the negative real axis For example take F(s) = 1/(s-1), it has a pole at s = 1, the contour needs to be shifted with one unit, i.e shift = 1. References ---------- Code adapted (vectorised, args added) from [1]_ and [2]_ (including much of the text taken verbatim). Algorithm from [3]_: .. [1] Created by Fernando Damian Nieuwveldt, 25 October 2009, fdnieuwveldt@gmail.com, http://code.activestate.com/recipes/576934-numerical-inversion-of-the-laplace-transform-using/ .. [2] Adapted to mpmath and classes by Dieter Kadelka, 27 October 2009, Dieter.Kadelka@kit.edu, http://code.activestate.com/recipes/578799-numerical-inversion-of-the-laplace-transform-with-/ .. [3] L.N.Trefethen, J.A.C.Weideman, and T.Schmelzer. Talbot quadratures and rational approximations. BIT. Numerical Mathematics, 46(3):653 670, 2006. See Also -------- geotecha.mathematics.mp_laplace.Talbot : higher precision numerical inverse Laplace transform. """ def __init__(self, f, n=24, shift=0.0, vectorized=True): self.f = f self.n = n + n % 2 self.shift = shift self.vectorized = vectorized def __call__(self, t, args=()): """Numerical inverse laplace transform of F at various time t. Parameters ---------- t : single value or np.array of float Time values to evaluate inverse laplace at. args : tuple, optional Additional arguments to pass to F. Default args=() Returns ------- inv_laplace : float or 1d array of float Numerical inverse Laplace transform at time t. """ t = np.atleast_1d(t)[np.newaxis, :] if np.any(t==0): raise ValueError('Inverse transform can not be calculated for t=0') # Initiate the stepsize h = 2*np.pi/self.n; theta = (-np.pi + (np.arange(self.n)+1./2)*h)[:, np.newaxis] z = self.shift + self.n/t*(0.5017*theta*cot(0.6407*theta) - 0.6122 + 0.2645j*theta) dz = self.n/t*(-0.5017*0.6407*theta*(csc(0.6407*theta)**2)+0.5017*cot(0.6407*theta)+0.2645j) if self.vectorized: inv_laplace = (np.exp(z * t) * self.f(z, *args) * dz).sum(axis=0) else: inv_laplace = np.exp(z * t) inv_laplace *= dz for i in range(inv_laplace.shape[0]): for j in range(inv_laplace.shape[1]): inv_laplace[i,j] *= self.f(z[i,j], *args) inv_laplace = np.sum(inv_laplace, axis=0) inv_laplace *= h / (2j * np.pi) if len(inv_laplace)==1: return inv_laplace[0].real else: return inv_laplace.real
if __name__ == '__main__': import nose nose.runmodule(argv=['nose', '--verbosity=3', '--with-doctest']) # nose.runmodule(argv=['nose', '--verbosity=3'])