Source code for geotecha.mathematics.laplace
# geotecha - A software suite for geotechncial engineering
# Copyright (C) 2018 Rohan T. Walker (rtrwalker@gmail.com)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see http://www.gnu.org/licenses/gpl.html.
"""Numerical inverse Laplace transform"""
from __future__ import print_function, division
import numpy as np
[docs]def cot(phi):
"""Reciprocal of tan function.
Parameters
----------
phi : float of 1d array of float
Point to evaluate at.
Returns
-------
out : float or 1d array of float
cot(phi)
"""
return 1/np.tan(phi)
[docs]def csc(phi):
"""Reciprocal of sin function.
Parameters
----------
phi : float of 1d array of float
Point to evaluate at.
Returns
-------
out : float or 1d array of float
csc(phi)
"""
return 1.0/np.sin(phi)
[docs]class Talbot(object):
"""Numerical inverse Laplace transform, Talbot method
Parameters
----------
f : function or method
Function to perform inverse Laplace transform on. Function should be
vectorised (but doesn't have to be).
n : even int, optional
Number of integration points. Nf n is even it will be rounded up to
nearest even number. Default n=24.
shift : float, optional
Shift contour to the right in case there is a pole on the positive
real axis. Default shift=0.0.
vectorized : True/False, optional
If True then `f` accepts vector inputs and numpy broadcasting will be
used. Otherwise function evaluation will occur in loops.
Default vectorized=True.
Notes
-----
Talbot suggested that the Bromwich line be deformed into a contour that
begins and ends in the left half plane, i.e., z infinity at both ends.
Due to the exponential factor the integrand decays rapidly
on such a contour. In such situations the trapezoidal rule converge
extraordinarily rapidly.
Shift contour to the right in case there is a pole on the positive real
axis : Note the contour will not be optimal since it was originally
devoloped for function with singularities on the negative real axis
For example take F(s) = 1/(s-1), it has a pole at s = 1, the contour
needs to be shifted with one unit, i.e shift = 1.
References
----------
Code adapted (vectorised, args added) from [1]_ and [2]_ (including much
of the text taken verbatim). Algorithm from [3]_:
.. [1] Created by Fernando Damian Nieuwveldt, 25 October 2009,
fdnieuwveldt@gmail.com, http://code.activestate.com/recipes/576934-numerical-inversion-of-the-laplace-transform-using/
.. [2] Adapted to mpmath and classes by Dieter Kadelka, 27 October 2009,
Dieter.Kadelka@kit.edu, http://code.activestate.com/recipes/578799-numerical-inversion-of-the-laplace-transform-with-/
.. [3] L.N.Trefethen, J.A.C.Weideman, and T.Schmelzer. Talbot quadratures
and rational approximations. BIT. Numerical Mathematics,
46(3):653 670, 2006.
See Also
--------
geotecha.mathematics.mp_laplace.Talbot : higher precision numerical inverse
Laplace transform.
"""
def __init__(self, f, n=24, shift=0.0, vectorized=True):
self.f = f
self.n = n + n % 2
self.shift = shift
self.vectorized = vectorized
def __call__(self, t, args=()):
"""Numerical inverse laplace transform of F at various time t.
Parameters
----------
t : single value or np.array of float
Time values to evaluate inverse laplace at.
args : tuple, optional
Additional arguments to pass to F. Default args=()
Returns
-------
inv_laplace : float or 1d array of float
Numerical inverse Laplace transform at time t.
"""
t = np.atleast_1d(t)[np.newaxis, :]
if np.any(t==0):
raise ValueError('Inverse transform can not be calculated for t=0')
# Initiate the stepsize
h = 2*np.pi/self.n;
theta = (-np.pi + (np.arange(self.n)+1./2)*h)[:, np.newaxis]
z = self.shift + self.n/t*(0.5017*theta*cot(0.6407*theta) - 0.6122 + 0.2645j*theta)
dz = self.n/t*(-0.5017*0.6407*theta*(csc(0.6407*theta)**2)+0.5017*cot(0.6407*theta)+0.2645j)
if self.vectorized:
inv_laplace = (np.exp(z * t) * self.f(z, *args) * dz).sum(axis=0)
else:
inv_laplace = np.exp(z * t)
inv_laplace *= dz
for i in range(inv_laplace.shape[0]):
for j in range(inv_laplace.shape[1]):
inv_laplace[i,j] *= self.f(z[i,j], *args)
inv_laplace = np.sum(inv_laplace, axis=0)
inv_laplace *= h / (2j * np.pi)
if len(inv_laplace)==1:
return inv_laplace[0].real
else:
return inv_laplace.real
if __name__ == '__main__':
import nose
nose.runmodule(argv=['nose', '--verbosity=3', '--with-doctest'])
# nose.runmodule(argv=['nose', '--verbosity=3'])